Technical Working Party on Testing Methods and Techniques TWN

TWM/3/6

Third Session Beijing, China, April 28 to May 1, 2025 **Original:** English **Date:** March 26, 2025

INVITE GENOMIC PREDICTION FOR REFERENCE COLLECTION MANAGEMENT: WHEAT

Document prepared by experts from the United Kingdom

Disclaimer: this document does not represent UPOV policies or guidance

The annex to this document contains a copy of a presentation "INVITE Genomic prediction for reference collection management: Wheat", to be made by experts from the United Kingdom, at the third session of the TWM.

[Annex follows]

TWM/3/6

ANNEX

Proposal The new method fits under application model b) • But like a) is linked to individual characteristics Uses Genomic Prediction to maximise the link between markers and phenotype • thus gives greater potential for trial size reduction Applied characteristic-by-characteristic, mirroring DUS assessments Aim to predict Distinctness decisions (or similarity) • Try to ensure that we do not eliminate close varieties Gain advantage from rule that distinctness only required in one characteristic • Method gives a mechanism for thresholding differences Targeting quantitative characteristics for now Page 4 h2020-invite.eu 4

Genomic	prediction uses genome-wide molecular markers to predict complex traits in individual
• M	arkers are associated with underlying genetic variation that influences the trait
• Io • Al	Select breeding material lows a better understanding of key traits, such as yield Field data is always limited and variable Augmenting field data with genetic data can give a better "prediction" of the trait Genetics is used as a tool to better understand the trait

Fit a ge	enomic prediction model to existing data
Predict	t the difference between a candidate and another variety
•	Varieties in collection have genetic data + historic phenotypic data
•	Candidate variety has genetic data only
Assess	whether the difference is significant
•	Can use same probability values as COYD (eg 1%)
•	For wheat, distinctness may be based on a fixed difference in UPOV notes (commonly 2 notes)
In some	e crops, including wheat, emphasis may be on finding similar varieties

Characteristic	gBLUP	gBLUP+QTL
Seed: colouration with phenol	5.8%	16.3%
Coleoptile: anthocyanin colouration	1.7%	5.9%
Growth habit	1.4%	
Frequency of plants with recurved flag leaves	7.1%	
Ear emergence	2.6%	
Flag leaf: glaucosity of sheath	1.0%	
Flag leaf: glaucosity of blade	3.8%	
Ear: glaucosity	1.6%	
Culm: glaucosity of neck	1.1%	
Plant: length	4.2%	
Ear density	2.3%	2.9%
Ear length	3.7%	
Awn or scur length	11.9%	23.3%
Area of hairiness on convex surface	1.1%	
Lower glume: shoulder width	1.3%	
Lower glume: shoulder shape	0.1%	
Lower glume: beak length	13.8%	19.8%
Lower glume: beak shape	0.9%	
Area of hairiness on internal surface	2.5%	4.5%

17

[End of Annex and of document]