Technical Working Party on Testing Methods and Techniques

TWM/3/11

Third Session Beijing, China, April 28 to May 1, 2025 Original: English Date: April 15, 2025

EXPLORATION OF IDENTIFICATION TECHNIQUES BASED SNP MARKERS FOR ESSENTIALLY DERIVED VARIETIES OF WHEAT

Document prepared by an expert from China

Disclaimer: this document does not represent UPOV policies or guidance

The annex to this document contains a copy of a presentation "Exploration of Identification Techniques based SNP markers for Essentially Derived Varieties of Wheat", to be made by an expert from China, at the third session of the TWM.

[Annex follows]

TWM/3/11

ANNEX

Exploration of Identification Techniques based SNP markers for Essentially Derived Varieties of Wheat

Binshuang Pang

Hybrid Wheat Research Institute Beijing Academy of Agriculture and Forestry Sciences, in China

1

Criteria for SNP Loci Selection

The selection of SNP loci was based on their distribution across the genome and their polymorphism information content (PIC). These loci were diploidized with unique positions, simply clustered, and characterized by low heterozygosity (less than 10%), $R^2 < 0.8$, and a low missing rate, making them suitable as candidate loci. We developed a BAAFS AFFY wheat 90K SNP array containing 84,662 SNP loci, which is highly effective for distinguishing hexaploid wheat accessions in China.

TWM/3/11 Annex, page 3

Genetic Similarity Threshold for EDVs

We constructed a fingerprint database using both SSR and SNP markers simultaneously. The results indicated that when the genetic similarity (GS) threshold based on SSR markers for similar varieties (SV) is above 90.0%, the GS threshold for Essential Derived Varieties (EDVs) is above 92.0%. If the GS between an Initial Variety (IV) and a putative EDV exceeds 92.0%, the latter may be classified as an EDV.

5

The minimum number of markers required for accurate classification without error at different gradients of true GS (100 simulations) relative to the EDV threshold of 0.92. The linkage disequilibrium (LD) between markers can influence the number of markers required for accurate classification without error.

When the true GS is 0.915, at least 19550 markers with an $R^2 < 0.8$ are required to ensure accurate classification without error. Since, Identification is required for a range of GS values, a minimum of 20,000 loci is required.

GS Loci Sample	<0.86	0.86-0.88	0.88-0.9	0.915	0.926	0.94-0.96	0.96-0.98	>0.98
All Loci	250	550	1050	14750	4450	450	250	50
Loci of R ² <0.8	250	750	9250	19550	1150	1750	250	50

7

TWM/3/11 Annex, page 5

Validation of the EDV threshold

The selection of a natural or induced mutant, or of a somaclonal variant, the selection of a variant individual from plants of the initial variety, backcrossing, or transformation by genetic engineering

_	Original Variety	Putative EDVs	Loci similarity value	Breeding method
I	Bainong 207	Bai Han 207	99.9%	selection of a variant individual
T	Lunxuan 987	Zhongmai 123	985%	backcross
I	Xiaoyan 54	EDV 13-2	97.8 %	backcross (5) Backcross (5)
I	Yanzhan 1	EDV 14-2	97.9 %	backcross
I	Zhou Mai 18	Zhongmai 66	97.2 %	backcross
	Jing 411	Y235	97.2 %	backcross
T	Zhoumai 16	Tianmai 863	95.6 %	Conventional systematic breeding
I	Zhoumai 16	Zheng Mai 618	93.6 <mark>%</mark>	backcross
	Stone 4185	Shimai 14	92.3 %	Conventional systematic breeding
	Xinmai 26	Kexing 3302	90.7 %	backcross
	Jinmai 47	Linkang 11	82.6 %	backcross
	Zhongke 1878	Zhongke 1878A	88.2%	selection of a variant individual
	Bainong AK 58	Bainong 418	72.2%	backeross

Analysis of EDV generation methods

doubled haploid (DH) breeding method

The genetic similarity (GS) between the parents is 0. The GS of DH offspring follows a normal distribution, with a small number of offspring having a GS greater than 0.92. This demonstrates that the DH method can also generate Essentially Derived Varieties (EDVs) of their parents

11

Analysis of EDV generation methods Backcross Breeding Method

The generation of EDVs through the backcross breeding method is influenced by the GS between the parents and the number of backcross generations. When the GS between the parents is less than 50%, the likelihood of generating EDVs by the third backcross generation may be lower than expected.

Single parent	recurrent parent	BC	LS	Phenotypic differences	Single parent	LS	Phenotypic differences
				Plant height(PH), heading stage(HS),			
DQM	ZhMai 366		52%	tillering stage(TS), flowering stage(FS), flag leaf(FL) Heading period(HP)			
P-EDV12	ZhMai 366	3	60%	PH. HS. TS. FS. FL	LGDOM	50 %	PH. HS. TS. FS. FL
P-EDV9	ZhMai 366	3	68%	HP, FP, FL	LGDQM	65%	PH, HS, TS, FS, FL
P-EDV1	ZhMai 366	3	75%	HP, FP	LGDQM	60%	PH, HS, TS, FS, FL
P-EDV3	ZhMai 366	3	77%	HS, TS, FS,	LGDQM	60%	PH, HS, TS, FS, FL
P-EDV4	ZhMai 366	3	77%	PH,HS,FS	LGDQM	60%	PH, HS, TS, FS, FL
P-EDV2	ZhMai 366	3	78 %	PH,HS,FS,FL	LGDQM	58%	HS, TS, FS, FL
P-EDV10	ZhMai 366	3	79%	HS,TS,FS,FL	LGDQM	61%	HS, TS, FS, FL
P-EDV5	ZhMai 366	3	81%	HS,FP	LGDQM	49%	HS, TS, FS, FL
P-EDV11	ZhMai 366	3	90%	HP, FP, FL	LGDQM	60 %	HS, TS, FS, FL
P-EDV7	ZhMai 366	3	91 %	HP, FP, FL	LGDQM	59 %	HS, TS, FS, FL
P-EDV6	ZhMai 366	3	91%	HP, FP, FL,HS	LGDQM	59 %	PH, HS, TS, FS, FL
P-EDV8	ZhMai 366	3	91 %	HP, FP, FL	LGDQM	59 %	PH, HS, TS, FS, FL

Summary

1. Quality control for SNP locus screening in the identification of allopolyploid hexaploid wheat EDVs— including locus uniqueness, heterozygosity, and missing rate — is crucial for accurate genotyping.

2.The determination of essential derivation is optimally based on genotypic data rather than solely on phenotypic comparisons.

3.Selecting over 20,000 SNP loci for wheat EDV identification is more reliable and secure. 4.Solid-phase wheat SNP chips are the most effective method for achieving accurate genotyping of high-density SNP loci.

5.It is suggested that the identification threshold of SNP-based GS (Genetic Similarity) value for EDVs in Chinese varieties, based on high-density SNP data, should be above 92.0%.

6.Conventional systematic breeding can also develop Essential Derived Varieties (EDVs) of their parents.

