Technical Working Party on Testing Methods and Techniques	TWM/3/10
Third Session	Original: English

EXPLOITING CROP HAPLOTYPE-TAG POLYMORPHISMS MARKER FOR PEDIGREE IDENTIFICATION

Document prepared by an expert from China

Beijing, China, April 28 to May 1, 2025

Disclaimer: this document does not represent UPOV policies or guidance

The annex to this document contains a copy of a presentation "Exploiting Crop Haplotype-tag Polymorphisms Marker for Pedigree Identification", to be made by an expert from China, at the third session of the TWM.

[Annex follows]

Date: April 22, 2025

TWM/3/10

ANNEX

1.1 Crop Pedigree

- □ Significance: Crop pedigrees documentation serves as a foundational data repository for intellectual property protection in agriculture, delineating genetic ancestry, evolutionary trajectories, and material provenance within breeding programs.
- Incomplete Pedigree Issues: Systematic gaps in germplasm pedigree annotation persist due to historical breeding practices, anthropogenic interventions, and archival, resulting in fragmented, incomplete, or unreliable documentation.
- □ **Technical requirements:** Conventional pedigree mapping methodologies relying on tabular representations and simplified kinship diagrams lack comprehensive representation of **genomic architecture**. Precise pedigree identification and reconstruction can effectively safeguard the rights and interests of breeders and farmers.

1.1 Crop Pedigree

□ Complexity of Pedigree Inference and Reconstruction: Crop reconstruction confronts significant technical challenges stemming from historical data fragmentation, inconsistent data annotation, and polygenic inheritance patterns in contemporary cultivars — a predicament particularly evident in species like Zea mays L. with

multigenerational selective breeding histories.

1.3 Block/Bin Map

□ Block/Bin: Currently, in plant breeding and genetics research, Block/Bin methodologies are utilized for genomic analysis and functional studies.

a. LD-based block:

Through evaluating allelic association patterns across single nucleotide polymorphisms (SNPs), genomic regions exhibiting elevated linkage disequilibrium are identified as conserved haplotype blocks, representing stable genetic transmission units.

b. Recombination-based block:

Standardized genomic intervals facilitate the consolidation of co-segregating SNPs into recombination blocks, thereby streamlining marker selection. Genotype assignment is subsequently achieved through employing computational.

1.5 Block Marker-Based P	edigree Reconstruction in Crops
□ Technical Design Scheme: Designed as continent multiple polymorphic loci (e.g., SNP, InDel, SSR) wi Acquiring more detailed and extensive variety inform	guous blocks that span entire chromosomes, integrating thin each block, achieving full-genome continuous coverage. nation enhances the precision of pedigree identification .
60MB 120MB 180MB 240MB 300MB Chr1 60MB 120MB 180MB 240MB 300MB Pos 9,210,906 9,296,355 9,426,680 9,426,680 A.T.T.L.D.A.A.T.D.T. T.G.A.C.D.A.D.I.A.L.D.I.T.C.G.C.L.T. C.A.T.C.A.A.T.A.D.C.D.T.T.C.T. Block TAADACACG GDADADIGTCTAATACTC Block Block_0060 Block_0061	
Block markers are poised to become identification, especially in the	a more suitable type of marker for variety context of pedigree identification.

2.1 HTP Development

□ HTP Genotype Generation

How to solve the comparison analysis of more than 10,000 samples if haplotypes are sequences?

Strategy:

- 1. Each complete haplotype within HTP is indexed, ensuring that each allele variation in HTP has a **unique Index**.
- 2. Adopt the SSR marker recording mode, treating each allele variation as a length variation, and genotype information is recorded as integers.
- 3. Each sample's genotype is stored and analyzed in a manner similar to SSR mode.
- 4. A haplotype sequence similarity comparison algorithm has been developed, which supports custom similarity parameters.

Sample_name	Jing2416	5237
chr1_HTP0001	1	5
chr1_HTP0002	1	5
chr1_HTP0003	1	1
chr1_HTP0004	1	1
chr1_HTP0005	1	7
chr1_HTP0006	0	0
chr1_HTP0007	1	6
chr1_HTP0008	1	2
chr1_HTP0009	1	3
chr1_HTP0010	1	3
chr1_HTP0011	1	2
chr1_HTP0012	1	4
chr1_HTP0013	1	5
chr1_HTP0014	1	2
chr1_HTP0015	2	3
chr1_HTP0016	1	4
chr1_HTP0017	1	3

Beijing Maize Seed Testing Center

- ✓ E-mail: fenggewangmaize@126.com
- ✓ Phone: +86 010 51508608
- ✓ Address: Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences (BAAFS), Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Shuguang Garden Middle Road No. 9, Beijing 100097, China

27

[End of Annex and of document]