

International Union for the Protection of New Varieties of Plants

Technical Working Party on Testing Methods and Techniques TWM/1/12

First Session Original: English

Virtual meeting, September 19 to 23, 2022 Date: September 2, 2022

DURDUSTOOLS: DEVELOPMENT OF A COMMON ONLINE MOLECULAR DATABASE AND A GENETIC DISTANCE CALCULATION TOOL FOR DURUM WHEAT

Document prepared by an expert from Austria

Disclaimer: this document does not represent UPOV policies or guidance

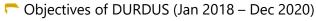
The annex to this document contains a copy of a presentation on "DURDUStools: Development of a common online molecular database and a genetic distance calculation tool for durum wheat", prepared by an expert from Austria, to be made at the first session of the TWM.

[Annex follows]

ANNEX

DURDUStools

Development of a common online molecular database and a genetic distance calculation tool for durum wheat


Presented by Alexandra Ribarits

Austrian Agency for Health and Food Safety, Division for Food Security

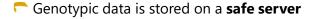
EASILY ACCESSIBLE TOOL FOR DUS TESTS

DURDUS and DURDUStools

- To investigate the potential of using a commercial chip to identify varieties to be grown in the field as references and to enable **pre-selection**
- Efficient management of reference collections
- Participating EOs: France, Hungary, Italy, Spain and Austria (project lead)
- Cobjective of follow-up project DURDUStools (Jan 2021 Jan 2023)
 - To provide an easily accessible tool to be used by DUS experts
 - Integration of molecular data into **DUS testing** in durum wheat
 - Participating EOs: Hungary, Italy, Spain and Austria (project lead)

PRINCIPLES OF DURDUStools

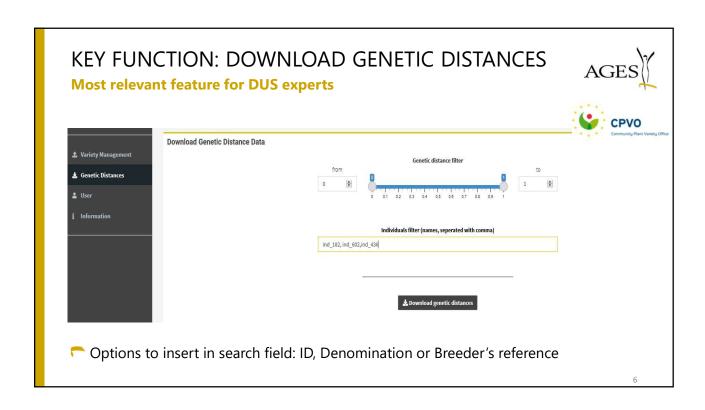
State-of-the-art genotyping: 25K DNA SNP-chip

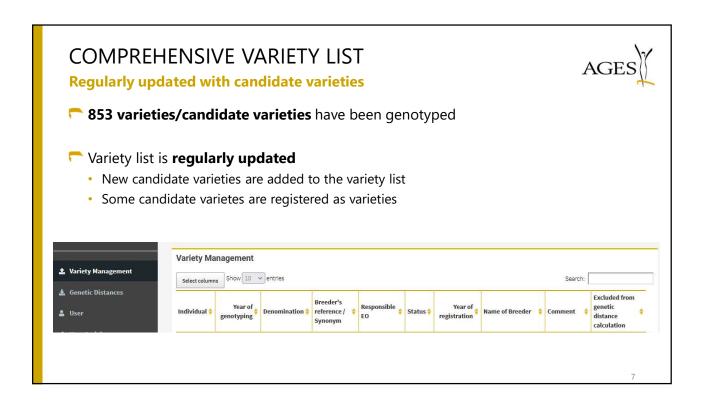

- Use of a commercially available DNA SNP-chip
 - Genotyping using a 25K DNA SNP-chip designed for wheat
 - One chip accommodates 94 samples
 - Data generated by the service provider and uploaded by the coordinator
 - Stored in a database encrypted information, limited access and defined use
- Selected information on the varieties stored in another list
 - Elements selected by the DUS experts
 - Regularly updated by the experts
- Tool uses information from both collections to create the output

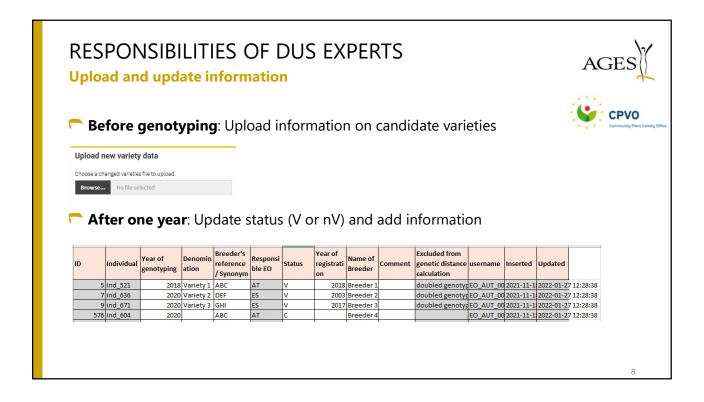
3

DATA - SECURE STORAGE, TRANSPARENT USE

Genotypic data provides valuable information






- Conly admin and coordinator have access to raw genotypic data
- Variety names in the genotypic data are encrypted
- Access to the tool is only given to the four entrusted EOs involved in the project and the project coordinator
- Breeders are informed about the genotyping with a prepared letter

4

CALCULATION OF GENETIC DISTANCES Modified Roger's distance Calculate genetic distance (GD) GD based on 4,807 high quality SNPs Pairwise deletion method: genetic distance calculation based on SNPs that have no missing values between the two varieties On average 4,731 SNPs used for GD calculation Calculation with R Software using Modified Roger's distance GD varies from 0.00 to 0.65 (mostly around 0.50)

CURRENT STATE OF USING DURDUSTOOLS

CPVO Community Plant Variety Offi

Use in second year of DUS tests

- · Time constraints for genotyping: current time schedule of seed delivery and sowing
- Phenotypic evaluation (e.g. GAIA) of first year is helpful
- The genetic distance threshold can be adjusted (GD 0.35 GD 0.4)
- Further testing and more practice in the EOs to increase the benefit in the first year of DUS trials

Practicability and usefulness

- SNP chip with specified number of samples (n=94)
 - · Durum wheat is a crop with only few candidate varieties each year → costs
- DURDUStools is practical and easy-to-use for DUS experts
- All DUS experts confirmed increased quality in DUS tests

9

KEY ADVANTAGES OF DURDUS/DURDUStools

Efficient, promotes cooperation and useful for DUS experts

- Cost efficient: Using a commercially available SNP-chip
- Resource efficient: No lab or molecular knowledge is needed at the EOs
- Promotes harmonization between the EOs
- Cooperation with a state-of-the-art service provider
- Needs-oriented: Output specified together with the DUS experts
- DUS experts conclude that it is a **very useful tool**

10

[End of Annex and of document]