

TWC/32/21 Add. ORIGINAL: English DATE: June 12, 2014

INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS Geneva

TECHNICAL WORKING PARTY ON AUTOMATION AND COMPUTER PROGRAMS

Thirty-Second Session Helsinki, Finland, June 3 to 6, 2014

ADDENDUM

REVISION OF DOCUMENT TGP/8: PART II: SELECTED TECHNIQUES USED IN DUS EXAMINATION, NEW SECTION: STATISTICAL METHODS FOR VISUALLY OBSERVED CHARACTERISTICS

Document prepared by an expert form Finland

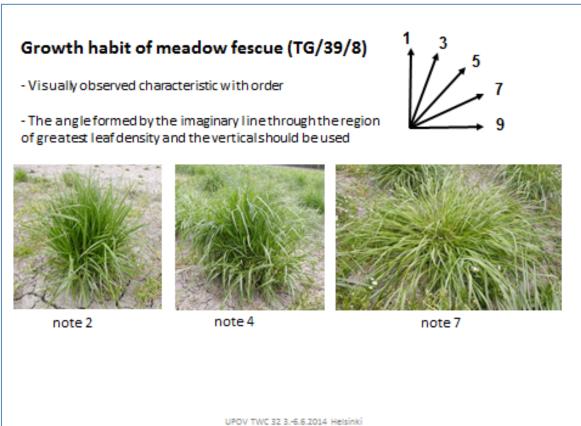
Disclaimer: this document does not represent UPOV policies or guidance

The Annex to this document contains a copy of a presentation on a comparison of the results on distinctness decision between the COYD method for ordinal characteristics and χ^2 -test that will be made at the Technical Working Party on Automation and Computer Programs (TWC), at its thirty-second session.

[Annex follows]

TWC/32/21 Add.

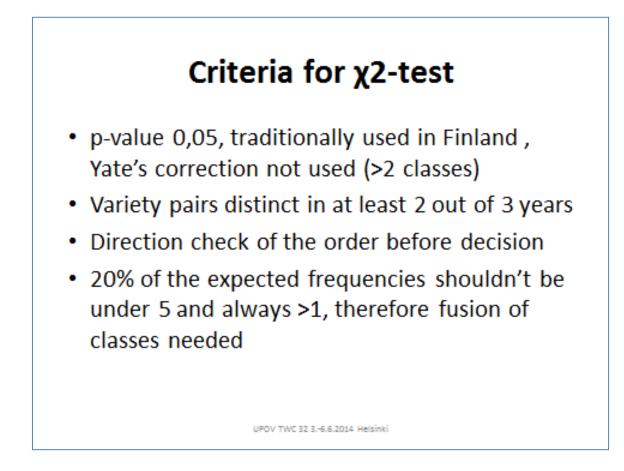
ANNEX


REVISION OF DOCUMENT TGP/8: PART II: SELECTED TECHNIQUES USED IN DUS EXAMINATION, NEW SECTION: STATISTICAL METHODS FOR VISUALLY OBSERVED CHARACTERISTICS

A COMPARISON OF THE RESULTS ON DISTINCTNESS DECISION BETWEEN THE COYD METHOD FOR ORDINAL CHARACTERISTICS AND X2-TEST

UPOV TWC 32nd meeting

Helsinki 3-6.6.2014


UPOV TWC 32 3.-6.6.2014 Helsinki

UPOV TWC 32 3.-6.6.2014 Helsinki

TWC/32/21 Add.

	2012	1	2	3	4	5	6
Example data	CANDIDATE A	2	20	25	5	8	1
	CANDIDATE B		20	21	11	5	
'ear 2012	c	-	24	21	7		1
	D	2	17	25	34	3	
	x 7	1	22	25	15	1	1
				25	4		
	с ж	3	29 25	20	-	1	
		1	20	21	8	2	
			15	27	12	6	
	x		15	14	13	13	2
	1	3	20	28	8	3	
	м	-	15	22	13	6	
	N		10	24	2	14	1
	0		19	29	10	1	
	2	2	25	52	3		
	0	1	24	24	8	2	
	2		24	25	•	1	
	5	1	16	27	11	4	
	т		19	24	7	7	
	U	2	17	51	8		
	v	1	12	24	5	15	
	w		14	17	15	15	
	x	2	24	24	8	2	
	Y		20	26	11	3	
	z	2	24	27	4		
	1	3	52	15	5		1
	2		22	50		2	
	5	1	19	17	15	7	
	4	1	17	25	9	2	
	:		14	25	15	4	

TWC/32/21 Add.

ANNEX, Page 3

2012	1-2	3	4	5-6						
Cand A	22	23	5	9	59	16.5	18.5	10	14	
F	11	14	15	19	59	16.5	18.5	10	14	0.0024
	33	37	20	28	118					
2011	2-3	4	5-6							
Cand A	2-3	23	2	54	21.5	22.5	10			
F	14	22	18	54	21.5	22.5	10	0.0001		
	43	45	20	108						+
										D
2010	2-4	5	6-7							
Cand A	5	32	4	41	5.369	28.798	6.8333			
F	6	27	10	43	5.631	30.202	7.1667	0.2187		
	11	59	14	84						

Comparison of the methods

Amount of D varieties:

	χ2-test	COYD				
Cand A	6 (20%)	11 (36%)				
Cand B	3 (10%)	10 (33%)				

In Average COYD for ordinal Characteristics separated Separated 20% more varieties From candidates than the x2-test.

	Ref.	CANDIDA	TE A		Distinct	Distinct	CANDIDATEB			Distinct	Distinct
	Variety	2010	2011	2012	by <u>x</u> 2-	by COYD	2010	2011	2012	by <u>y</u> 2	by COYD
	andA	-	-	-	10	.10	0,02 (*	0,38	0,31	50	
	cand B	0,02(*	0,53	0,31	10	00	-	-	-	00	10
	C	0,68	0,16	0,86	10	00	0,31	0,12	0,67	00	10
	D	0,24	0,04(*	0,06	10	10	0,25	0,74	0,88	00	10
	E	0,003	0,07	0,07	10	D	0,00œ	0,46	0,09	10	D
	F	0,04(*	0,0001	0,002	D	D	0,74	0,002	0,005	D	D
	G	0,01	0,64	0,06	10	10	0,14	0,80	0,02	10	10
	H	0,0002	0,0005(*	0,03	D	D	0000000	0,16	0,01	10	D
	- I	0,40	0,77	0,85	10	10	0,01	0,38	0,66	00	10
	1	0,34	0,21	0,16	10	10	0,01	0,17	0,68	10	10
	K	0,13	0,001	0,04	D	D	0,43	0,09	0,07	00	D
	L	0,14	0,40	0,27	10	10	0,15	0,76	0,65	10	10
	M	0,18	0,33	0,21	10	10	0,39	0,07	0,95	10	no
	N	0,09	0,0005	0,07	10	D	0,28	0041.	0,03	00	D
	0	0,007 d	otocel	0,02.0	10	10	0,02	0,65	0,26	10	10
	P	0,001(*	0,0004	0,01	D	D	0,001	0,09	0,002	D	D
	Q	0,01	0,51	0,15	10	10	0,03	0,42	0,48	10	10
	R	0,26	0,54	0,08	10	10	0,53	0,42	0,17	10	10
	5	0,007(*	0,15	0,16	10	10	0,03	0,24	0,78	00	no
	T	0,22	0,001	0,85	10	10	0,46	0,46	0,69	10	no
s	U	0,0008	otori(.	0,08	10	D	0,007	0,58	0,18	10	D
	V V	0,30	0,004(*	0,40	10	D	0,66	0,39	0,06	10	D
	W	0,15	-	0,04	D	00	0,24	0,22	0,13	00	10
	Х	0,02 (*	*) 200,0	0,13	10	10	0,01 (*	0,67	0,45	10	10
	Y	0,47	0,35	0,14	10	10	0,20	0,63	0,82	10	10
	2	0,04(*	0,02(*	0,04	80	D	άσι(•	0,37	0,01	00	D
	1	0,004	0,0001	0,02	D	D	0,02	0,14	0,03	D	10
	4	0,39	015	0,14	10	10	0,39	145	0,22	10	10
	3	0,32	0,22	0,10	10	D	0,04	0,32	0,72	80	D
	4	0,17	0,01	0,09	10	00	0,13	0/07	0,46	00	10
1	T VO9	1895 3	₩ <u>6 201</u>	Helsi	nki 10	10	0,/3	ųц <i>1</i>	UAY	10	10

[End of annex and of document]