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SECTION 8.5

STATISTICAL METHODS FOR DUS EXAMINATION

8.5.1 ANALYSIS OF VARIANCE

1. The analysis of variance (anova) of data from a designed experiment has two purposes.
Firstly it subdivides the data’s total variation into separate campts with each component
representing a different source of variation, so that the relative importance of the different
sources can be assessed. Secondly it provides an estimate of the random variation in the data.
This may be used as an estimate of ien when comparing means calculated from the data.

2. Anova can take many forms. Just two forms will be considered in detail here. These
are the two forms which arise as part of the statistical techniques recommended by UPOV. At
their simplest, both perate on amxmtable of data. They are the :

—  Two-way anova, e.g. asised in the analyis of varietyby-year meandor a
characteristic forv varieties grown in each off the Combined Over Years
Distinctness (COYD) criterion. The paireddst is a spcial case of twavay
anova.

- Oneway anova, e.g. adused in the analysisof variety-by-year adjusd
log(SD+1)’s (a measure of uniformity) for a characteristiciaeference varieties
grown in each ofy years in the Combined Over Years Uniformity (COYU)
criterion.

3. The particular form an anova takes depends on the origins of the data. This determines
the model for the data, i.e. what factors are likely to cause the data to vary, which in turn
determines what components the total variation is divided,iand hence the form of the
anova.

Two-way anova
The data model

4. In two-way anova, theaxxm table of data corresponds ton data values classified by

two factors: Factor 1 withm levels and Factor 2 witm levels. Usually, only one of the
factors wll be of interest while the other will be present simply because it explains variability

in the data. For example (Example A), each data value might be the mean over all plants in a
plot for a characteristic from a trial withb plots laid out inb blocks(Factor 1) ofv varieties
(Factor 2), the factor of interest.

mean of all plants ii

Example A: data from a trial with v varieties andb blocks the plot in block b

Block 1 Block 2 BIOCK3———_ Blockb/" | iy {ariety 2
Variety 1 - - }
Variety - - - -
Variety(3 -
> vbdata values
Varietyv

mean of all plants in the plot in block 2 with vaty 3
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5. Alternatively, for the above COYD example (Example B), the data values might consist
of the vy variety-by-year meanfor a characterisc for v varieties(Factor 2, the factor of
interest) gown in each ofy years (Factor 1).

Example B: data for COYD example with v varieties grown

in yyears
Yearl YearZ Year3 ..— Yeary _
Variety 1 - - - > variety-by-year
Variety 2 - - - - mean for variet)
Variety 3< 2inyear3
data values
Varietyv vy

variety-by-yeamean forvariety vin year2

6. If xrepresents one of themdata values in thexmtable of data, the model explaining
the variation in the data is as follows :

_ Factor : x Factor : L
x = Factor 1 effect + Factor 2 effect( interaction effect + random varlatlo)

Thus each of them data values is made up of a sum of effects. The “Factor 1 éféext
“Factor 2 effect” are due to the particular levels of Factors 1 and 2 influencing the data value.
An interaction between two factors is when the effects of one factor differ, i.e. are
inconsistent, from level to level of the other factor. So a FHatkb-actor2 interaction is when
Factor 1 effects differ from level to level of Factor 2. In the above model the remainder, or
residual, of the data value is the amount, additional to its Factor 1 effect and its Factor 2
effect, which appears to be dueits particular combination of Factor 1 and 2 levels. This
amount might be partly due to a genuine interaction or it might be just due to random
variation. As there is just a single data value for each combination of Factor 1 and 2 levels it
is not posdile to determine which.

7. For Example A, the model explaining the variation in the data is as follows :

variety x block

X = block effect + variety effect + ( interaction effec

+ random variation)

In this example each of theb data values (one from each of thik plots) is made up of the

sum of a “block effect”, due to the block the plot is iplus a “variety effect”, due to the
variety sown on the plot, plus a remainder. This remainder, or residual represents the amount
that is additional to the variety and block effects. As there is just a single data value for each
variety in each block, its not possible to separate interaction effects and random variation.
However, as the variety effects are not expected to differ from block to block, or in other
words any varietyblock interaction is expected to be negligible, the residual is likely to be
due to random variation.
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8. For Example B (COYD), the model explaining the variation in the data is as follows :

variety x yeal

x = year effect + variety effect ‘( interaction effec

+ random variation)

Here each of they variety-by-year means made up of a sum of effectsThe “year effect”

is an amount due to the year the variety-by-year mean neesrded in. The year effects
might or might not be the same for all years. The “variety effect” is an amount due to the
variety of the variety-by-year mean, and might or might not be #meesfor all varieties The
remainder, or radual o the variety-by-year mean represetite amount that isdditional to

its variety effect and its year effect, which appears to be due to that particular variety in that
particular year. This amount may be partly due to a genuine vasgety interactioreffect or

it may be just due to random variation caused by the means having been calculated from
different plants grown on different plots, and possibly due to measurement error. As there is
just a sngle variety-by-year mean for each variety in each yearrioisposgble to diginguish
between interaction effects and random variation.

The tweway analysis of variance table

9. Two-way anova produces a table as follows:

Degreesof Sumof Mean

Source of variation Freedom  Squares Square F-ratio
Factor 1 m-1 - - -
Factor 2 n-1 - - -
Residual (n-1)(m-1) - -

Total nm-1 -

[As the anova computations are likely to be done by computer, details are not given here. The
interested reader can find them in a good statistical book such as DAENEL98 and
1981), Kala (2002), Mead et al (1993), and Sokal and Rohlf (1995).]

10. For Example A, the twavay anova table is as follows:

Degrees of Sumof Mean

Source of variation Freedom Squares Square F-ratio
Block b-1 - - -
Variety v-1 - - -
Residual (b-1)(v-1) - -

Total vb-1 -
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11. For Example B (COYD), the twavay anova table is as follows:

Degrees of Sumof Mean

Source of variation Freedom Squares Square F-ratio
Year y-1 - - -
Variety v-1 - - -
Residual (y-1)(v-1) - -

Total vy-1 -

12. The total variation in the data is measured by the Total Sum of Squares, which is the
sum of the squared deviations of all the data from their meanEéx— X). Itis subdivided

into “sums of squares” represemgi the three component sources of variation includetthén

data modelvariation due to Factor 1, variation due to Factor 2 and residual variation. These
sums of squares are divided by their degrees of freedom (df) to give “mean squares”, which
can be diectly compared in order to assess the relative magnitude of the different sources of
variation. This is done in the final column where thedtio’s are the ratios of each of the
Factor 1 and Factor 2 mean squares to the residual mean square. Préwvedagsumptions
discussed below about the data are valid, comparison of thesoFs with F tables on the df

of the numerator and the denominator mean squares will providests” of the significance

of the variation due to each of Factors 1 and.&, whether Factors 1 and 2 have significant
effects.

13. The residual mean square is a variance. It estimates the combined variation due to any
FactorlxFactor2 interaction and random variation. Hence, it is often referred to as the
“Factor1-by-Factor2 mean square”, e.g. the “varieby-block mean square” in Example A

or the“variety-by-yearmean squareih the COYD example(ExampleB).

14. Statistical theory shows that in tweay anova it is appropriate to use the residual mean
square to estimate the nance or standard errors of means calculated from the data. This is
the case whether the FactbrFactor2 interaction is assumed to be negligible, such as in
Example A, or not, such as in the COYD example (Example B).

15. Worked examples of twavay anowa are given in Appendix Al. These are of the same
types as Examples A and B above.

One-way anova

The data model

16. In oneway anova, th@xmtable of data corresponds to data classified mtgroups by

a single factor of interest such that there aiedependent replicates within each group. Itis
important to note that the replicates are different within each group, i.e. there is nothing in
common between th&" replicate in one group and th# replicate in another group. For
example (Example C), eh data value might be the plot yield from a trial withplots laid

out with r replicate plots of each dftreatments (the factor of interest). Alternatively each
data value might be the mean over all plants in a plot for a characteristic for phas.
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Example C: data from a trial with r replicate plots oft treatments

Treat'l FreatZ Treat 3 ..— Treat't plot yield in replicate

Replicate 1 2 plot of treatment

Replicate
Replicate

Repiiéater tr data values

plot yield in replicate plot of treatment 2

17. Alternatively, as in the above COYU example (Example D), they might consist of
variety-by-year adjusted log(SD+1)’s for reference varieties (replicates) grown in eacly of
years (the factor of interest) for a characteristic.

Example D: data for COYU example withv varieties grown iny years

Yearl YearZ Year3 —— Yeary

variety-by-year

Var?ety 1 adjusted

Var!ety - - - - log(SD+1) for
Variety variety 2 in year 3
Varietyv I vy data values

variety-by-year adjusd log(SD+1)Yor variety vin year2

18. It might surprie the reader to see the adjusted log(SD+1)'s ofutvarieties within a

year regarded just as replicates, and not as a second factor like wdwanova. Year is
included as a factor in the anova because the overall levels of uniformity, as meastued by
adjusted log(SD+1)’s, can be expected to vary from year to year. However, by regarding the
uniformity values of thev varieties within a year as replicates, this allows the variation
between them to be used as an estimate of the random variatianfarmity between the
reference varieties, which are all considered to be uniform. It will be seen in the following
that this estimate of the random variation in uniformity among the (uniform) reference
varieties is used to compare the uniformity of adiagate variety with the mean uniformity of

the (uniform) reference varieties. This is done in order to see whether the uniformity of the
candidate variety is extreme relative to the uniformity of the reference varieties.

19. If xrepresents one of themdatavalues in thexxmtable of data, the model explaining
the variation in the data is as follows :

x = Factor effect + random variation

Thus each of them data values is made up of the sum of a “Factor effect”, which is due to
the particular level of th factor influencing the data value, plus a residual amount which is
random variation. This means that the variation between data values within a group is
considered to be random variation.



TGP/8.5 Draft 2
page8

20. For Example C, the model explaining the variation in the dassifllows :

X = treatment effect + random variation

Here each of thér plot yields is the sum of a “treatment effect”, due to the treatment the plot
receives, plus a residual amount due to random variation.

21. For Example D (COYU), the model explaininiget variation in the data is as follows :

x = year effect + random variation

Here each of they variety-by-year adjusd log(SD+1)’s i.e. measuresf uniformity, is the

sum of a “year effect” plus a residual amount due to random variation. This isaqut to
recognising that uniformity is likely to vary from year to year, and is expected to vary at
random from variety to variety within a year. Note: the absence of a variety effect in the
model indicates that, within a year, apart from random vammgtuniformity is expected to be
the same for all reference varieties.

The oneway analysis of variance table

22. Oneway anova produces a table as follows:

Degrees of Sumof Mean
Source of variation Freedom Squares Square F-ratio

Factor m-1 - - -
Residual m(n- 1) - -
Total nm-1 -

[Again, details of the anova computations are not given here but may be found in DAGNELIE
(1998 and 1981), Kala (2002), Mead et al (1993), and Sokal and Rohlf (1995).]

23. For Example C, the onway anova table issafollows:-

Degrees of Sumof Mean
Source of variation Freedom Squares Square F-ratio

Treatment t-1 - - -
Residual t(r-1) - -

Total tr-1 -
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24. For Example D (COYU), the oneay anova table is as follows:

Degrees of Sumof Mean
Source of variation Freedom Squares Square F-ratio

Year y-1 - - -
Residual y(v-1) - -
Total vy-1 -

25. The total variation in the data subdivided into “sums of squares” representing the two
component sources of variation the data modeli.e. variation due to the factor of interest

and residual or random variation. The sums of squares are divided by their degrees of
freedom (df) to give directly comparable “mean squares” used to compare the two sources of
variation. This is done in the finaloblumn where the ffatio is the ratio of the factor mean
square to the residual mean square. Providing the assumptions discussed below about the
data are valid, comparison of ther&tio with F tables om- 1 andm(n - 1) df provides an “F

test” of the sgnificance of the variation due to the factor of interest, i.e. whether that factor
has a significant effect.

26. The residual mean square is a measure pooled over groups of the variation in the data
from replicate to replicate within a group. Thus it is arlance and estimates the random
variation in thenxm table of data that has been analysed. Consequently, it can be used to
estimate the variance or standard errors of means calculated from the data.

27. Worked examples of oneray anova are given in Appendf2. These are of the same
types as Examples C and D above.

Assumptions about the data

28. Two assumptions are necessary for-oveey and tweway anova. They are that:

(a) the variability of the data in thexm table of data is the same for the diffeten
levels of the classifying factors.

Thus, for tweway anova it is assumed that the variability of themeans is the
same for all varieties and for all blocks in Example A, and that the variability of
the vy variety-by-year means is the same for allridies and for all years in
Example B (COYD).

For oneway anova it is assumed that the variation in the plot yields between the
replicates within a treatment is the same for all treatments in Example C.
Likewise, in the onevay anova COYU example (Ergple D) it is assumed that
the variation between the adjusted log(SD+1)’s of the different varieties in a year
is the same from year to year,

(b) the model describes the data adequately in that the effects of the classifying
factors are additive. For exple (Example A), it is assumed that the expected
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difference in the data values for two varieties is the same in one block as it is in
any other block.

Failure of this assumption will lead to large residuals, as the residual is the part of
a data value Wwich is not explained by the additive factor effects. This in turn will
lead to a large residual mean square, which will give large standard errors of
means, and so large differences will be required between factor means in order for
them to be declaredgmificant.

An example of such a failure would be when a vansgtyar interaction occurs, i.e.
when the variety effects are inconsistent over years in thevtay anova COYD
example (Example B). Here only large differences between varieties would be
dedared significant.

29. For Ftests of ratios of anova mean squares atebts based on anova mean squares (or

the equivalent use of LSD’s based on anova mean squares) it is also necessary to assume that
the data values are independent and that the randaatiearin the data has an approximately
Normal distribution.

The precision of means and the differences between means

30. Let X, and X, be factor means of, andr, data vales from thenxm table of data that
has been analysed by anova (or from equivalent data). The precision of axneudamerei =
1 or 2,is measured by its standard err@H(X ) ), which is estimated by

RMS

Where RMS s the residual mean square from the anova of ik table of data. The
precision of the difference in two mean, —X,, is measured by its standard error,
(SE(X, - X,)), which is estimated by

SE®, - %) = RMS(1+£]

nn

Comparisons of means

31 The significance of the difference betwe&nand X, can be tested by either:

i1 B X2

E(il - )_(2)
the df of heRMSin eithera onetailed test, if it is knowrapriori which mean will
be larger, or a twdailed test otherwise.

—  Comparing the absolute difference between the mqips,>‘(2|, with the 10xp%

least significant difference (LSD), i.e. cqaring
|X, — %,| with txSE(X, —X,)

—  Comparing the two samplestatistict = with Student’s {tables on
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wheret is the 100xp% critical value fromStudent’s {tables on the df of th&MS.
Thecritical value should be the orailed value if it is knowrapriori which mean
will be larger, and twetailed otherwise.

100 x p%

one-tailed critical value

100 x % 100 x %

0 N

two-tailed critical value

Higher-order anova’s

32. Anova has been introduced as the subdivision of the total variation among the data
values in amxmtable of data such that it :

—  allows a comparison of the different sources of variation

— provides an estimate dfi¢ random variation affecting threndata values

Thenxm table of data may consist of means calculated from a higher order table of data such
as anlxnxm table of data or &xIxnxm table of data. For example, in the above tway

anova COYD example (ExartgB) the vxy table of data are varietlgy-year means fow
varieties in each oy years and these can be viewed as having been calculated froxmean

table of plot means from trials withblocks andv varieties in each oy years. Alternatively

they @n be viewed as having been calculated frokxxvxy table of measurements dn
plants in each plot of trials withblocks andv varieties in each of years.

33. If the nxm table of data takes the form of means calculated from a higher order table,
the exrimenter can analyse the data using a muétiy anova that is a logical extension of

the twoway anova. In this the total variation is subdivided into components for each of the
factors classifying the data table plus components forwag, threeway ard all higher order
interactions between the factors. As with the tway anova, the components of variation can

be compared using ratios of mean squares. Also the residual mean square is a variance which
estimates the random variation at the level ofdlaga values in the table of data that has been
analysed.

34. Given data values in a motbantwo-way table of data, the experimenter has the
choice of analysing it by mukiay anova or by calculating amm table of means and using
two-way anova. If thedata values in th@xm table are the means ofof the original data

values, then the mean squares in the multy anova are times the size of the equivalent

mean squares in the twway anova. Thus whichever approach is used, the relative sizes of
themean squares are the same and the variances estimated by the residual mean square in the
two-way anova can be derived from the mean squares in the higher order anova. However, it

is important for the purposes of COYD that the variety means are compairgl variances
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or standard errors based on the vareyyyear mean square as an estimate of random
variation, such as is provided by the residual mean square Hwayoanova.

Unbalanced data and the method of Fitting Constants

35. An nxm table of data thahas a data value present in each of time table cells is
balanced. If data values are missing from one or more cells it is unbalanced or incomplete.

36. Although the data for onevay anova was introduced for simplicity as having equal (
replication in @ch of them groups, i.e. balanced, this is not a necessary requirement fer one
way anova. If, instead of being balanced, the data consist of a total data values
unequally replicated within then groups, the computations are straight forward, and the
anova table looks similar to that for omeay anova except that the df differ. The total dins

1, the factor df iam-1, and the residual df is calculated by subtracting the factor df from the
total df, i.e. (v-1) - (m-1).

37. By contrast, the data for twavay anova must be balanced. If the data is unbalanced,
i.e. some of theaxxmtable’s cells have no data, tweay anova cannot be used. Instead, some
other method of analysing twaway data such as the method of Fitting Constants or Fitcon
(Yates (1933)) prestricted maximum likelihood (REML) (Patterson and Thompson (1971))
must be used. Unbalanced data would arise in the abovevlayoanova COYD example
(Example B) if one or more of thevarieties either was not present or failed to grow in one or
moreof they years. It also arises in the calculation of Long Term LSD for use in Long Term
COYD. In this a table of varietpy-year means that extends over more years and varieties
than are present in the test years is to be analysed. As not all vaaetipsesent in all years,
this table is unbalanced. Like twway anova, Fitcon subdivides the total variation in the data
into different components for the different sources of variation, and the residual mean square
provides an estimate of the randomagrwariation. The df are as for the tweay anova
except that the total df ie-1 wherew is the total number of data values, and the residual df is
calculated by subtracting the df for each of Factor 1 and Factor 2 from the total diy-1¢ -
(m1) - (n-1).

38. If the data is unbalanced in either emay anova or tweway analysis such as Fitcon or
REML, the standard errors needed for LSD’s 4ests for comparing factor means are more
complicated because they differ depending on which factor mean g mempared with
which. In oneway anova this simply affects the replication of the factor meansidr,)

and the standard errors are calculated as given above. lway@nalysis the standard errors

are furher complicated because they depend on the pattern of missing values for the two
factor means being compared. However they are easily calculated by a computer program.

The paired t-test

39. The pairedest is a special case of twaay anova where the famt of interest has just
two levels. Thus, it is used when there isra¢® table of data corresponding to gata values
classified by two factors: Factor 1 with levels and Factor 2, the factor of interest with 2
levels.
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40. Examples of the pairedtest include:

(@) Each data value might be the plot yield from a trial with @ots laid out inb
blocks (Factor 1) of 2 treatments (Factor 2);

(b) in DUS testing when a special test is set up to test distinctness between two
varieties using additiad characteristics. A number of plants of each variety are
sown in a trial. This is repeated in time withindependent sowings. In this
example (Example E) the data values are tleenZans for the additional
characteristic, each based on a fixed numbkestablished plants, from the
sowings (Factor 1) of the two varieties (Factor 2).

Example E: data from a special teswith 2 varieties and s sowings
| Sowing 1 Sowing2 Sowing3 ... Sowings
Variety 1 - -

Variety 2 - - \

mean of all variety : = 2sdatavalues
plants in sowina

mean of all
variety 2 plant:
in sowings

41. The analysis can be done in either of the two following ways:
The paired ttest using a onsample test of differences

42. The difference in the two data values (odata value for each of the two levels of
Factor 2, the factor of interest) for each of théevels of Factor 1 is obtained. This produces
n differences denoted;, i=1,...n. The mean difference and the variance of the differences
are calculated and uséal produce the one samplatatistic as follows:

d
SHd)

whered = 1Zdi is the mean difference, arﬁE(d): S is the standard error of the mean
n n

i=1

difference, andsj = L (di— 6)2 is thevariance of the ifferences, which is more easily

n
n-13

n n 2
computed as2 = illz d.? —(Z di] /n} .
n-15= i=1

Providing the assumptions about the data discussed above are validsthistic can be

compared with Student'stables onn-1 df in a onetailed test if the sign of the mean
difference is knowr priori, or a twotailed test otherwise. Thiwill test whether the mean
difference is significantly different from zero, i.e. whether Factor 2 has a significant effect.
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The paired {test using two way anova

43. A standard tweway anowa of thenx2 table of data will provide an anova table with
F-ratio’s of each of the Factor 1 and Factor 2 mean squares to the residual mean square.
Providing the assumptions about the data discussed above are valid, comparison of these
F-ratio’s with F tables on the df of the numerator and the denominator mean squares will
provide “Ftest’s” to test whether Factors 1 and 2 have significant effects.

44. For Example E, the twavay anova table is as follows:

Degrees of Sumof Mean

Source of variation Freedom Squaes Square F-ratio
Sowing s-1 - - -
Variety 1 - - -
Residual s-1 - -

Total 2s-1 -

45. The residual mean square from the tway anova can be used to estimate the variance

or standard errors of means calculated from the data. Thesdearsed to calculate a
two-sample 1statistic (or the equivalent LSD), which can be used to test the significance of
the difference between the two factor means for Factor 2, i.e. test whether Factor 2 has a
significant effect.

46. Whichever method of analysis used, the significance of the test of the effect of Factor
2 will be the same. In other words the significance of ttest in the former method will be
the same as the significance of thedst of the Factor 2 effects and the significance of the
t-test of the two Factor 2 means in the latter method.

47. A worked example of a pairedtéest of the same type as Example E is given in
Appendix A3.
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APPENDICES

APPENDIX Al

Example of two-way anova (same type as Example A)

1. A trial with four blocks of five varieties of Kale was sown with 15 plants per plot. The
data below are the plot means over all the plants in a plot for the “petiole length in mm”
characteristic.

Block
Variety I Il 11 \Y

361 375 361 399
388 383 376 401
356 386 365 382
383 373 385 405
386 385 389 413

ZZrr X«

2. Two-way anova of the data produces the following table:

Degrees of Sum of Mean
Source of variation Freedom  Squares Square F-ratio

Block 3 2116.00 705.33 9.95
Variety 4 1316.30 329.08 4.64
Residual 12 850.50 70.88

Total 19 4282.80

3. From Ftables the 5%, 1% and 0.1% criticaivialues on 4 and 12 df are 3.259, 5.412
and 9.633 respectively. Comparison of the Varietyaito with these shows that thereas
significant variety effect (P<0.05). The residual mean square or vareblock mean
square is an estimate of the random variability of the 20 values in the above data table. It may
be used to estimate the variance or standard errors of means taddutan the data.

4. The variety means are the means of 4 data values and are as fellows:

Variety Mean

J 374.0
K 387.0
L 372.2
M 386.5
N 393.2

5. Their standard erroiSE(X), is estimated by

SEX) = \/er\/IS = \/70488: 421
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6. The standard error of the difference in two meai@E&[, - X,) ), is estimated by
SEX, -X%,) = RIVIS(l + ij = 70.85{1 + 1) =595
rnor 4 4

7. The significance of the difference between pairs of variety means can be tested by
comparing the lasolute difference between pairs of means with, for example, th& &
where

5% LSD =txSH X, — X, ) = 2.179x5.95=1297

andt is the 5% twetailed critical value from Student’stables on 12 df. Thus varieties J and
K are significantly different at the 5%\el, whereas varieties J and L and varieties M and N
are not significantly different at the 5% level etc..

Example of two-way anova (same type as Example B)

8. This example illustrates the calculation of the COYD criterion. The data are the
variety-by-year means for 11 varieties of italian ryegrass in three years for the “plant width in
cm at ear emergence” characteristic.

Variety Yearl Year2 Year3

L 60.66 61.47 55.18
N 58.91 62.28 55.66
O 5446 56.68 51.32
P 57.69 5475 5494
Q 56.57 57.62 51.46
R 51.33 5340 49.18
S 58.59 59.08 51.67
T 63.47 58.94  54.97
Vv 66.14 6549 60.15
w 62.63 63.90 58.84
AC 60.36 58.42 58.51

9. Two-way anova of the data produces the following table:

Degrees of Sumof Mean
Source of variation Freedom  Squares Square F-ratio

Year 2 148.821 74.4106 26.843
Variety 10 383.679 38.3679 13.841
Residual 20 55.443 2.7721

Total 31 587.944

10. From Ftables the 5%, 1% and 0.1% criticaivialues on 10 and 20 df are 2.348, 3.368
and 5.075respectively. Comparison of the Varietyr&tio with these shows that there is a
very highly significant variety effect (P<0.001). The residual mean square or \xayergar
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mean square is an estimate of the random variability of the 33 values imdve data table.
It may be used to estimate the variance or standard errors of means calculated from the data.

11. The variety means are the means of 3 data values and are as foellows:

Variety Mean

59.103
58.950
54.153
55.793
55.217
51.303
56.447
59.127
63.927
61.790
59.097

>PS<—H0NVOTOZr

@

12. Their standard erroiSE(X), is estimated by

SE@:\/RMS:\/z.Wzl
r

13. The standard error of the difference in two meai@E, - X,) ), is estimated by

SEX, -X,) = /RME{i+ij = /2.772{l+lj =1.3594
r, r, 3 3

14. The significance of the difference between pairs of variety means can be tested by
comparing the absolute difference between pairs of means with tHeSDDAvhere

=0.9613

1% LSD =t xSE(X, — X,) = 2.845x1.3594= 3.868
andt is the 1% twetailed critical value from Student’stables on 20 df. Thus varieties L
and N are not significantly different at the 1% level, whereas varieties L and O and varieties L
and Q are significantly different at the 1% level etc..

15. For more information on the COYD criterion see TGP 9.7.
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APPENDIX A2

Example of oneway anova (same type as Example C)

1. The data below are the plot yields in Kg from a glasshouse experiment consisting of 18
pots (plots) of potato plants to which 8plicates of each of six fungicide treatments were
allocated at random.

Replicate Treat'l Treat'2 Treat'3 Treat'4 Treat'5 Treat' 6

1 1.07 0.23 1.07 0.66 1.07 0.91
2 0.74 0.54 0.63 0.85 1.31 0.94
3 0.89 0.57 1.08 0.78 1.50 0.66

2. Oneway anova othe data produces the following table:

Degrees of Sumof Mean
Source of variation Freedom Squares Square F-ratio

Treatments 5 1.1236 0.2247 6.48
Residual 12 0.4161 0.0347
Total 17 1.5398

3. From Ftables the 5%, 1% and 0.1% criticalalues on5 and 12 df are 3.106, 5.064
and 8.892 respectively. Comparison of the Treatmerati® with these shows that there is a
highly significant treatment effect (P<0.01) on the plot yield. The residual mean square is an
estimate of the random variability tfie 18 values in the above data table. It may be used to
estimate the variance or standard errors of means calculated from the data.

4. The treatment means are the means of 3 data values and are as follows:

Treatment Mean

0.900
0.447
0.927
0.763
1.293
0.837

U WNPE

5. Their standard erroiSE(X), is estimated by

SER) = RMS: 0.0347:01075
r 3

6. The standard error of the difference in two meai@& [, - X,) ), is estimated by

SE(K, - X,) = RMS[1+1J = \/0.034{%%} =0.1521

o n
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7. The significance of thalifference between pairs of treatment means can be tested by
comparing the absolute difference between pairs of means with, for example, th83%
where

5% LSD =txSHX; — X, ) = 2.179x0.1521= 0.3313

andt is the 5% twetailed critical value from Student'stebleson 12 df. Thus treatments 1
and 2 and treatments 1 and 5 are significantly different at the 5% level, whereas treatments 1
and 3 are not significantly different at the 5% level etc..

Example of oneway anova (same type as Example D)

8. This example illustates a stage in the calculation of the COYU criterion. The data are
the varietyby-year adjusted log(SD+1) of the “days to ear emergence” characteristic for 11
reference varieties of perennial ryegrass in three years. The data have been adjusted for any
relationships between log(SD+1) and mean values for the characteristic. The data are as
follows:-

Variety Yearl Year2 Year3

R1 2.36 2.13 2.30
R2 2.32 2.00 2.00
R3 2.42 2.10 1.95
R4 2.43 1.96 2.06
R5 2.52 2.14 1.96
R6 2.36 1.84 2.16
R7 2.43 2.19 1.80
R8 2.44 1.70 1.91
R9 2.52 2.16 2.24

R10 2.33 2.23 2.09
R11 2.28 1.78 1.96

9. Oneway anova of the data produces the following table:

Degrees of Sumof Mean
Source of variation Freedom Squares Square F-ratio

Year 2 1.011 0.5053 25.06
Residal 30 0.605 0.0202
Total 32 1.616

10. From Ftables the 5%, 1% and 0.1% criticaivialues on 2 and 30 df are 3.316, 5.390

and 8.773 respectively. Comparison of the Yeaa#o with these shows that there is a very
highly significant year effect (P<001) on uniformity. However, this fest is of minor
importance in calculating the COYU criterion. Of real importance is the overall mean
adjusted log(SD+1) for all the reference varieties, and the residual mean square. The residual
mean square provides @&stimate of the random variability of the 33 values in the above data
table, i.e. the variation between reference varieties within years. It may be used to estimate
the variance or standard errors of means calculated from the data. In particulanyg tie

overall mean of the reference varieties to be compared with a candidate variety’'s mean
adjusted log(SD+1).
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11. The overall mean adjusted log(SD+1) is 2.154. It is the mean of the reference varieties’
33 data values. lts standard err8E(X), is estimated by

SEX) = \/er\/IS = \/0'2:2302: 0.0247

12. If X, represents the overall mean adjusted log(SD+1)Xnd candidate variety’s mean
adjusted log(SD+1) which is the mean of the equivalent of 3 data valoes,the standard
error of the difference in the two meanSK(x, - X,) ), is estimated by

SE®, - %,) = RMS{1+1] - \/o.ozoz(sif%j = 0.0857

1 I"2

13. The significance of the difference betweg&n the overall mean adjusted log(SD+1) and
X, , a candidate variety’s mean adjusted log(SD+1) can be tested by comparing

%, = %,| = X, — %, with t xSE(X, —X,) = 3.118x0.0857= 0.2672

Wheret is the 0.2% onedailed critical value (ondailed because the candidate’s mean is only
rejected if it is larger han the overall mean) from Student'sables on 30 df. This is
equivalent to comparing

X, with 0.2672+ X, = 2.4212

14. Thus if a candidate variety has a mean adjusted log(SD+1) greater than 2.42, its mean is
significantly greaterhian the mean of the reference varieties at the 0.2% level, and hence the
candidate variety is considered to be significantly less uniform than the reference varieties. If
the candidate variety’'s mean adjusted log(SD+1) is less than 2.42, the mean will be
considered to be not significantly different from the mean of the reference varieties at the
0.2% level, and hence the candidate variety not significantly different from the reference
varieties in uniformity.

15. For more information on the COYU criterion s&é&P/10.3.1.
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APPENDIX A3

Example of a paired ttest (same type as Example E)

1. A special test was set up in order to test distinctness between two varieties of perennial
ryegrass using the additional characteristic “Seedling width of vegetative leaffty fitants

of each variety were sown at each independent sowing in a glasshouse, and when the plants
were established, the “Seedling width of vegetative leaf” was observed in mm on each plant,
and the mean for each variety calculated. There were 6 indepérsowings and the data
below are the 12 means: one for each variety for each sowing.

Sowing
Variety I Il 1] 1] 1] \Y}
J 6.9 7.9 5.2 5.8 6.5 4.8
N 5.9 6.7 3.8 5.3 3.6 3.6

2. The data will be analysed using each of the described methods.
The pairal t-test analysis using a orsample itest of differences

3.  Subtracting the variety N data value from the variety J data value for each sowing gives
the following differences:

Sowing

I I 1 1l 1l \Y
Difference () 1.0 1.2 1.4 0.5 2.9 1.2

4.  The nmean differenced , the variance of the difference§ , and the standard error of the
mean differencéSE(J) are calculated from the differences as follows:

- 1&, 1& 1 B
d=-3>4d =234 —6(1.0+1.2+1.4+...+1.2)—E><8.2—1.37

e e B e e

6
= %{21.02 +1.22+1.4%+..+1.2° —(1L0+1.2+1.4+ ...+1.2)2/6}

= %[14.5— (8.2 /6] = 0.6587

-\ |s5 _ /0.6587 _
SE(d)—\/%—,/ " = 03313

5. These are used to calculate the one samptatistic as follows:
. d _ 137 _
SHd) 0.331f
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6. From Student’s-tables the 5%, 1% and 0.1% twailed critical t values on 5 df are
2.571, 4.032 and 6.869 respectively. Comparison of tstatistic with these shows that the
mean difference is highly significantly different from zero (PXD), i.e. Variety has a highly
significant effect. From the sign of the mean difference it is apparent that variety J has a
greater “Seedling width of vegetative leaf” than variety N.

The paired {test analysis using two way anova
7. Two-way anova of thelata produces the following table:

Degrees of Sum of Mean
Source of variation  Freedom  Squares Square F-ratio

Sowing 5 13.8900 2.7780 8.44
Variety 1 5.6033 5.6033 17.01
Residual 5 1.6467 0.3293

Total 11 21.1400

8. From Ftables the 5%, 1% an@l 1% critical Fvalues on 1 and 5 df are 6.608, 16.26 and
47.18 respectively. Comparison of the Varietydtio with these shows that there is a highly
significant Variety effect (P<0.01). The residual mean square or vaoggowing mean
square is angtimate of the random variability of the 12 values in the above data table. It may
be used to estimate the variance or standard errors of means calculated from the data.

9. The variety means are the means of 6 data values and are as fellows:

Variety Mean

J 6.18
N 4.82

10. Their standard erroiSE(X), is estimated by

SER) = RMS: 0.3293:0.2343
r 6

11 The standard error of the difference in two meai@E; - X,) ), is estimated by

SE(, - %,) = /RMs[l+l] - \/0.3293{55] = 03313
rnn 6 6

12. The significance of the difrence between the two variety means can be tested by
calculating the two sampledtatistic:

(o %% _618-482
SE(X,—X,)  0.331:

=412
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From Student’s-tables on 5 df, the 5%, 1% and 0.1% taadled critical t values are 2.571,
4.032 and 6.869 spectively. Comparison of thestatistic with these shows that the
difference in the variety means is highly significant (P<0.01), i.e. variety J has a greater
‘Seedling width of vegetative leaf’ than variety N.

[End of document]



