

TC/49/22 ORIGINAL: English DATE: February 18, 2013

INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS Geneva

TECHNICAL COMMITTEE

Forty-Ninth Session Geneva, March 18 to 20, 2013

REVISION OF DOCUMENT TGP/8 PART I: DUS TRIAL AND DESIGN AND DATA ANALYSIS, NEW SECTION: MINIMIZING THE VARIATION DUE TO DIFFERENT OBSERVERS

Document prepared by the Office of the Union

1. The purpose of this document is to present a draft of a new section for document TGP/8 Part I: DUS Trial and Design and Data Analysis, on "Minimizing the Variation due to Different Observers".

2. The following abbreviations are used in this document:

CAJ:	Administrative and Legal Committee
TC:	Technical Committee
TC-EDC:	Enlarged Editorial Committee
TWA:	Technical Working Party for Agricultural Crops
TWC:	Technical Working Party on Automation and Computer Programs
TWF:	Technical Working Party for Fruit Crops
TWO:	Technical Working Party for Ornamental Plants and Forest Trees
TWPs:	Technical Working Parties
TWV:	Technical Working Party for Vegetables

3. The structure of this document is as follows:

BACKGROUND	1
COMMENTS OF THE TECHNICAL WORKING PARTIES (TWPS) IN 2012	2
COMMENTS OF THE ENLARGED EDITORIAL COMMITTEE (TC-EDC) IN 2013	2

ANNEX: PROPOSED TEXT TO BE INCLUDED IN TGP/8 PART I: DUS TRIAL AND DESIGN AND DATA ANALYSIS, NEW SECTION: MINIMIZING THE VARIATION DUE TO DIFFERENT OBSERVERS (IN ENGLISH ONLY)

BACKGROUND

4. The Technical Committee (TC), at its forty-eighth session, held in Geneva from March 26 to 28, 2012, considered the revision of document TGP/8, Part I "Trial Design and Techniques Used in the Examination of Distinctness, Uniformity and Stability" on the basis of document TC/48/19 Rev.

5. The TC, at its forty-eighth session, agreed to request the drafter to prepare a new draft of the Section "Minimizing the Variation due to Different Observers", on the basis of the comments made by the TWPs in 2011, as set out in document TC/48/19 Rev., Annex II (see document TC/48/22 "Report on the Conclusions" paragraph 51).

TC/49/22 page 2

6. The TC noted that new drafts of relevant sections would need to be prepared by April 26, 2012, in order that the sections could be included in the draft to be considered by the TWPs at their sessions in 2012 (see document TC/48/22 "Report on Conclusions" paragraph 49).

COMMENTS OF THE TECHNICAL WORKING PARTIES (TWPS) IN 2012

7. At their sessions in 2012, the TWA, TWV, TWC, TWF and TWO considered documents TWA/41/24, TWV/46/24, TWC/30/24, TWF/43/24 and TWO/45/24, respectively, containing the proposed text for a new section in TGP/8 Part I: "DUS Trial and Design and Data Analysis", on "Minimizing the Variation due to Different Observers" prepared by Mr.Gerie van der Heijden (Netherlands), as set out in the Annex to this document (in English only^{*}), and made the following comments:

General	The TWV considered document TWV/46/24 and highlighted the importance of the	TWV
	calibration of the observer (see document TWV/46/41 "Report", paragraph 35).	
	The TWC considered document TWC/30/24 and recommended that it should be	TWC
-	sent for consideration by the TC for incorporation into TGP/8 after amendment in the	
	last sentence of Section 6.1 to read "for systematic differences" (see document	
	TWC/30/41 "Report", paragraph 23).	

COMMENTS OF THE ENLARGED EDITORIAL COMMITTEE (TC-EDC) IN 2013

8. The TC-EDC, at its meeting held in Geneva on January 9 and 10, 2013, considered document TC-EDC/Jan 13/9 "Revision of document TGP/8 Part I: DUS Trial and Design and Data Analysis, New Section: Minimizing the Variation due to Different Observers", as set out in the Annex of this document, and made the following comments:

General remark	document should also cover PQ characteristics (e.g. color, shape etc.)
Title	to read: REVISION OF DOCUMENT TGP/8 PART I: DUS TRIAL DESIGN OF AND DATA ANALYSIS, NEW SECTION: MINIMIZING THE VARIATION DUE TO DIFFERENT OBSERVERS
Annex, paragraph 1	Reference should be made not only to QN/MS but also to QN/MG
Annex, paragraph 1.1	to read " So, if observer A <u>assesses</u> measures variety 1 and observer B variety 2, the difference <u>observed</u> measured might be caused by differences between observers A and B instead of differences between varieties 1 and 2. Clearly, our main interest lies with the differences between varieties and not with the differences between the observers"
Annex, paragraphs 2.1 and 2.2	to correct numbering
2.1	Last sentence should be deleted
3.1	to read "After training an observer, the next step could be to test the performance of the observers in a calibration experiment. This is especially useful for inexperienced observers who have to make visual observations (QN/VG and QN/VS characteristics). If making visual VG observations, they should preferably pass a calibration test prior to making observations in the trial. But also for experienced observers, it is useful to test themselves on a regular basis to verify if they still fulfill the calibration criteria."
3.3	to be deleted
4.	to read "Testing the calibration for QN/MG or QN/MS characteristics"
4.1	to add a blank line after paragraph

The TC-EDC, at its meeting on January 9 and 10, 2013, agreed that it would not be appropriate to translate the text for the forty-ninth session of the TC.

TC/49/22 page 3

9. The TC is invited to request the preparation of a new draft section on "Minimizing the Variation due to Different Observers" for consideration by the TWPs at their sessions in 2013, on the basis of the comments by the TWPs and the TC-EDC.

[Annex follows]

TC/49/22

ANNEX

(IN ENGLISH ONLY)

PROPOSED TEXT TO BE INCLUDED IN TGP/8 PART I: DUS TRIAL AND DESIGN AND DATA ANALYSIS, NEW SECTION: MINIMIZING THE VARIATION DUE TO DIFFERENT OBSERVERS

1. Introduction

This document has been prepared with QN/MS, QN/VG and QN/VS characteristics in mind. It does not explicitly deal with PQ characteristics like color and shape. The described Kappa method in itself is largely applicable for these characteristics, e.g. the standard Kappa characteristic is developed for nominal data. However, the method has not been used on PQ characteristics to our knowledge and PQ characteristics may also require extra information on calibration. As an example, for color calibration, you also have to take into account the RHS Colour chart, the lighting conditions and so on. These aspects are not (yet) covered in this document.

1.1 Variation in measurements or observations can be caused by many different factors, like the type of crop, type of characteristic, year, location, trial design and management, method and observer. Especially for visually assessed characteristics (QN/VG or QN/VS) differences between observers can be the reason for large variation and potential bias in the observations. An observer might be less well trained, or have a different interpretation of the characteristic. So, if observer A measures variety 1 and observer B variety 2, the difference measured might be caused by differences between observers A and B instead of differences between varieties 1 and 2. Clearly, our main interest lies with the differences between varieties and not with the differences between the observers. It is important to realize that the variation caused by different observers cannot be eliminated, but there are ways to control it.

2. Training

2.2 Training of new observers is essential for consistency and continuity of plant variety observations. Calibration manuals, supervision and guidance by experienced observers as well as the use of example varieties illustrating the range of expressions are useful ways to achieve this.

2.1 UPOV test guidelines try to harmonize the variety description process and describe as clearly as possible the characteristics of a crop and the states of expression. This is the first step in controlling variation and bias. However, the way that a characteristic is observed or measured may vary per location or testing authority. Calibration manuals made by the local testing authority are very useful for the local implementation of the UPOV test guideline. Where needed these crop-specific manuals explain the characteristics to be observed in more detail, and specify when and how they should be observed. Furthermore they may contain pictures and drawings for each characteristic, often for every state of expression of a characteristic. The calibration manual can be used by inexperienced observers but are also useful for more experienced or substitute observers, as a way to recalibrate themselves.

3. <u>Testing the calibration</u>

3.1 After training an observer, the next step could be to test the performance of the observers in a calibration experiment. This is especially useful for inexperienced observers who have to make visual observations (QN/VG characteristics). If making VG observations, they should preferably pass a calibration test prior to making observations in the trial. But also for experienced observers, it is useful to test themselves on a regular basis to verify if they still fulfill the calibration criteria.

3.2 A calibration experiment can be set up and analyzed in different ways. Generally it involves multiple observers, measuring the same set of material and assessing differences between the observers.

3.3 In general, inexperienced observers are less likely to be entrusted to make VG observations but might be entrusted to make MG and MS observations.

4 <u>Testing the calibration for QN/MS characteristics</u>

4.1 For observations made by measurement tools, like rulers (often QN/MS characteristics), the measurement is often made on an interval or ratio scale. In this case, the approach of Bland and Altman (1986) can be used. This approach starts with a plot of the scores for a pair of observers in a scatter plot, and compare it with the line of equality (where y=x). This helps the eye gauging the degree of agreement

TC/49/22 Annex, page 2

between measurements of the same object. In a next step, the difference per object is taken and a plot is constructed with on the y-axis the difference between the observers and on the x-axis either the index of the object, or the mean value of the object. By further drawing the horizontal lines y=0, y=mean (difference) and the two lines y = mean(difference) $\pm 2 x$ standard deviation, the bias between the observers and any outliers can easily be spotted. Similarly we can also study the difference between the measurement of each observer and the average measurement over all observers. Test methods like the paired t-test can be applied to test for a significant deviation of the observer from another observer or from the mean of the other observers.

4.2 By taking two measurements by each observer of every object, we can look at the differences between these two measurements. If these differences are large in comparison to those for other observers, this observer might have a low repeatability. By counting for each observer the number of moderate and large outliers (e.g. larger than 2 times and 3 times the standard deviation respectively) we can construct a table of observer versus number of outliers, which can be used to decide if the observer fulfills quality assurance limits.

4.3 Other quality checks can be based on the repeatability and reproducibility tests for standard measurement methods as described in ISO 5725-2. Free software is available on the ISTA website to obtain values and graphs for seed laboratory tests according to this ISO standard.

4.4 In many cases of QN/MS, a good and clear instruction usually suffices and variation or bias in measurements between observers is often negligible. If there is reason for doubt, a calibration experiment as described above can help in providing insight in the situation.

5. Testing the calibration for QN/VS or QN/VG characteristics

5.1 For the analysis of ordinal data (QN/VS or QN/VG characteristics), the construction of contingency tables between each pair of observers for the different scores is instructive. A test for a structural difference (bias) between two observers can be obtained by using the Wilcoxon Matched-Pairs test (often called Wilcoxon Signed-Ranks test).

5.2 To measure the degree of agreement the Cohen's Kappa (κ) statistic (Cohen, 1960) is often used. The statistic tries to accounts for random agreement: $\kappa = (P(agreement) - P(e)) / (1-P(e))$, where P(agreement) is the fraction of objects which are in the same class for both observers (the main diagonal in the contingency table), and P(e) is the probability of random agreement, given the marginals (like in a Chi-square test). If the observers are in complete agreement the Kappa value $\kappa = 1$. If there is no agreement among the observers, other than what would be expected by chance (P(e)), then $\kappa = 0$.

5.3 The standard Cohen's Kappa statistic only considers perfect agreement versus non-agreement. If one wants to take the degree of disagreement into account (for example with ordinal characteristics), one can apply a linear or quadratic weighted Kappa (Cohen, 1968). If we want to have a single statistic for all observers simultaneously, a generalized Kappa coefficient can be calculated. Most statistical packages, including SPSS, Genstat and R (package Concord), provide tools to calculate the Kappa statistic.

5.4 As noted, a low κ-value indicates poor agreement and values close to 1 indicate excellent agreement. Often scores between 0.6-0.8 are considered to indicate substantial agreement, and above 0.8 to indicate almost perfect agreement. If needed, z-scores for kappa (assuming an approximately normal distribution) are available. The criteria for experienced DUS experts could be more stringent than for inexperienced staff.

6. <u>Trial design</u>

6.1 If we have multiple observers in a trial, the best approach is to have one person observe one or more complete replications. In that case, the correction for block effects also accounts for the bias between observers. If more than one observer per replication is needed, extra attention should be given to calibration and agreement. In some cases, the use of incomplete block designs (like alpha designs) might be helpful, and an observer can be assigned to the sub blocks. In this way we can correct for the systematic differences between observers.

7. Example of Cohen's Kappa

7.1 In this example, there are three observers and 30 objects (plots or varieties). The characteristic is observed on a scale of 1 to 6. The raw data and their tabulated scores are given in the following tables.

	Observer	Observer	Observer
Variety	1	2	3
V1	1	1	1
V2	2	1	2
V3	2	2	2
V4	2	1	2 2
V5	2	1	
V6	2	1	2
V7	2	2	2
V8	2	1	2
V9	2	1	2
V10	3	1	3
V11	3	1	3
V12	3	2	2
V13	4	5	4
V14	2	1	1
V15	2	1	2
V16	2	2	3
V17	5	4	5
V18	2	2	3
V19	1	1	1
V20	2	2	2
V21	2	1	2
V22	1	1	1
V23	6	3	6
V24	5	6	6
V25	2	1	2
V26	6	6	6
V27	2	6	2
V28	5	6	5
V29	6	6	5
V30	4	4	4

The contingency table for observer 1 and 2 is:

01\02	1	2	3	4	5	6	Total
1	3	0	0	0	0	0	3
2	10	5	0	1	0	1	17
3	2	1	0	0	0	0	3
4	0	0	0	1	0	0	1
5	0	0	0	1	0	2	3
6	0	0	1	0	0	2	3
Total	15	6	1	3	0	5	30

The Kappa coefficient between observer 1 and 2, κ (O1,O2) is calculated as follows:

- $\kappa(O1,O2) = (P(agreement between O1 and O2) P(e)) / (1 P(e)) where:$
- P(agreement) = (3+5+0+1+0+2)/30 = 11/30 ≈ 0.3667 (diagonal elements)
- $P(e) = (3/30).(15/30) + (17/30).(6/30) + (3/30).(1/30) + (1/30).(3/30) + (3/30).(0/30) + (3/30).(5/30) \approx 0.1867.$ (pair-wise margins)
- So κ(O1,O2) ≈ (0.3667-0.1867) / (1-0.1867) ≈ 0.22

This is a low value, indicating very poor agreement between these two observers. There is reason for concern and action should be taken to improve the agreement. Similarly the values for the other pairs can be calculated: $\kappa(O1,O3) \approx 0.72$, $\kappa(O2,O3) \approx 0.22$. Observer 1 and 3 are in good agreement. Observer 2 is clearly different from 1 and 3 and probably needs additional training.

8. <u>References</u>

Cohen, J..(1960) A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20: 37-46.

Cohen, J. (1968) Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychological Bulletin, 70(4): 213-220.

Bland, J. M. Altman D. G. (1986) Statistical methods for assessing agreement between two methods of clinical measurement, Lancet: 307–310.

http://www.seedtest.org/en/stats-tool-box- content---1--1143.html (ISO 5725-2 based software)

[End of Annex and of document]