

BMT-TWA/Maize/2/7-c ORIGINAL: English DATE: November 26, 2007

INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS GENEVA

AD HOC CROP SUBGROUP ON MOLECULAR TECHNIQUES FOR MAIZE

Second Session Chicago, United States of America, December 3, 2007

EDV IN CORN:

IDENTIFYING ESSENTIALLY DERIVED VARIETIES WITH MOLECULAR MARKERS

Document prepared by experts from the International Seed Federation (ISF)

Identifying Essentially Derived Varieties with Molecular Markers

M. Bohn, M. Frisch, M. Heckenberger, D. Klein, H.P. Maurer, A.E. Melchinger

Slide 3

Slide 4

Accuracy of estimated GS values

N = sample size.

Slide 6

Knowledge of the distribution of GS(P1,O) is a key prerequisite to develop a statistical test for identifying EDVs. However, an analytical description of this distribution is not available. Slide 7

Slide 9

Slide 13

Slide 15

Slide 17

Summary and Conclusions – "Maize"

- Type I and II error rates were substantially different for material groups for fixed EDV thresholds.
- Joint threshold for intra-pool and inter-pool crosses increases risk to produce EDV from intra-pool cross.
- Thresholds must be pool specific!
- Different thresholds for intra-pool and inter-pool crosses are necessary!
- EDV thresholds must account for lab errors and intra-varietal variation.

Slide 19

	F ₂		BC1		
Par.	Obs.	Sim.	Obs.	Sim.	
μ_{p}	0.4893	0.5000	0.6567	0.7500	
σ_p^2	0.0107	0.0102	0.0088	0.0076	
$\mu_{GD_{(P1,P2)}}$	0.6314		0.7277		
$\sigma^2_{_{_{GD(P1,P2)}}}$	0.0024		0.0034		
$\hat{\mu}_{_{GD_{(P1,O)}}}$	0.3095	0.3157	0.2465	0.1819	
$\sigma^2_{_{_{GD_{(P1,O)}}}}$	0.0051	0.0063	0.0034	0.0043	

Obs. = observation

Sim. = simulation

on: Variance	of GD(P	1,0)
Percent of	$\sigma^2_{GD_{(P1,O)}}$ e	xplaine
Par.	F ₂	BC_1
_		<u>୫ </u>
$\sigma^2_{p_1}$	65	94
$\sigma^2_{GD_{(P1,P2)}}$	34	5
$\sigma^2_{GD_{(P1,P2)}}\sigma^2_{p_1}$	< 1	< 1

	Flint		Dent	
	obs.	sim.	obs.	sim.
$\alpha = 0.05$				
C	0.21	0.17	0.24	0.18
(1-β)	77%	72%	63%	71%
ι = β				
2	0.24	0.20	0.28	0.22
(1-β)	12%	12 %	17%	14 8

	Fli	nt	Den	t
	obs.	sim.	obs.	sim.
T = 0.25				
α	0.18	0.30	0.07	0.26
(1-β)	92 %	98 %	68 %	95 %
r = 0.20				
	0.03	0.11	0.01	0.09
1-β)	72%	87 %	39 %	81 %

Slide 27

Acknowledgements				
GFP	Gesellschaft zur Foerderung der privaten Pflanzenzuechtung (GFP), Germany European Union			
	Iowa State University Commercial Breeding Companies			

[End of document]