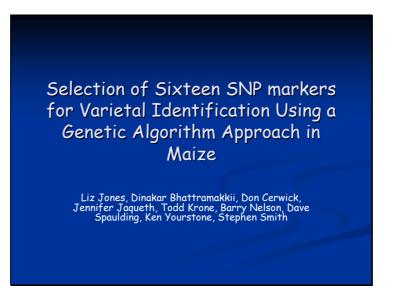


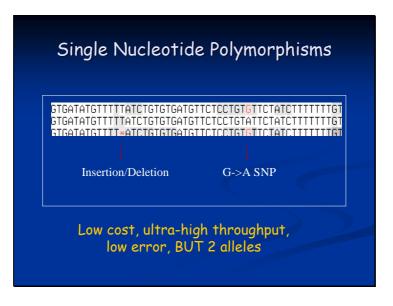
BMT-TWA/Maize/2/5 Add. ORIGINAL: English DATE: December 3, 2007

INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS GENEVA

AD HOC CROP SUBGROUP ON MOLECULAR TECHNIQUES FOR MAIZE


Second Session Chicago, United States of America, December 3, 2007

ADDENDUM TO DOCUMENT BMT-TWA/MAIZE/2/5


SELECTION OF SIXTEEN SINGLE NUCLEOTIDE POLYMORPHISM (SNP) MARKERS FOR VARIETAL IDENTIFICATION USING A GENETIC ALGORITHM APPROACH IN MAIZE INBREDS

Document prepared by experts from Pioneer Hi-Bred International

This document is an addendum to document BMT-TWA/Maize/2/5 "Selection of Sixteen Single Nucleotide Polymorphism (SNP) Markers for Varietal Identification Using a Genetic Algorithm Approach in Maize Inbreds" and contains a copy of the presentation made by experts from Pioneer Hi-Bred International at the second session of the *Ad Hoc* Crop Subgroup on Molecular Techniques for Maize.

Slide 2

Here a segregating population of maize individuals are being interrogated as to whether they are homozygous for the A allele (blue) or homozygous for the C allele (red) or heterozygous (yellow). By the time profiles from 30 or more SNP loci are interrogated each maize inbred essentially has a fingerprint.

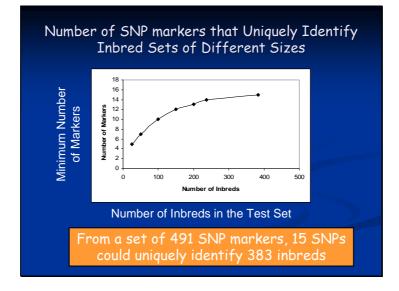
Using SNPs for Varietal Identification

- Can bi-alleleic markers give sufficient resolution to be used in variety identification?
- Need small numbers to be inexpensive enough to be routinely used in variety identification
- How do we select the best set of SNPs that together can most effectively identify maize germplasm?

Slide 4

Genetic Algorithm Approach

- Genetic algorithm: A search technique used to find exact or approximate solutions to problems
- Uses techniques inspired by evolutionary biology such as inheritance, mutation, selection and recombination
- 'Randomly place an item into a set and then test the result to see if it is better or worse than the original set. Once the replacement strategy settles on a plateau, it randomly replaces within that set in an attempt to find a higher plateau. The process repeats thousands of times and you will get a very good answer rather quickly.'


Slide 6

Available Data for Analysis

- 383 diverse US and EU inbreds
- 491 SNP markers
 - good quality data under high throughput conditions
 - High polymorphism information content (PIC) in US and EU commercial germplasm
- Tested sub-sets of inbreds of different sizes to determine the minimum number of markers that could uniquely identify members of each sub-set

BMT-TWA/Maize/2/5 Add. page 5

Slide 7

Slide 8

Selecting The Best SNP Set

- Selected sets of 16 SNPs
 - 16 SNPs gave more combinations of markers to chose from
 - Wanted a set with a marker on each chromosome
 - Amenable to automation
- Tested six sets under high throughput conditions and selected best one to study further

Direct Comparison of SNPs with Isozymes

- 10 inbreds sampled and compared to data for 212 inbreds, some highly related
 - The same plants were sampled using
 - 15 isozymes (coleoptile tissue)
 - 16 SNPs (DNA extracted from leaves)
 - Replicate samples of between 15 and 143
- The sample profiles (including missing data, heterozgous and wrong calls for that sample) were compared to profiles for 212 inbreds
 - a 'resolution score' was calculated = 1/the number of matching profiles.
 - A score of 1 indicates complete resolution ie the only matching profile is to itself, and decreasing values indicate decreasing resolution power

Slide 10

BMT-TWA/Maize/2/5 Add. page 7

Slide 11

Inbred	Number of samples	Overall resolution 15 isozymes	Overall resolution 16 SNPs
A	145	0.05	0.94
В	20	0.05	0.91
С	21	0.08	1
D	16	0.07	0.94
Е	23	0.05	1
F	20	0.07	1
G	16	0.03	1
H	15	0.03	1
I	48	0.17	0.98
J	48	0.17	0.98
Overall	387	0.06	0.96

Slide 12

Analysis of PVPd Inbreds with 16 SNPs

- 309 US Pioneer inbreds
 - 47292/47542 (99.9%) pairs could be resolved
- 192 European Pioneer inbreds
 18319/18336 (99.9%) pairs could be resolved
- Some missing data with complete data the resolution could be higher

Conclusions

- Genetic algorithms provide a powerful method for selecting markers that collectively provide high resolution power for variety identification
- A carefully selected set of SNPs will provide a much greater level of resolution than isozymes and can tolerate missing data due to sufficient redundancy
- 16 SNPs are extremely powerful at distinguishing among US and EU inbreds that are relevant to commercial germplasm today

Slide 14

BMT-TWA/Maize/2/5 Add. page 9

Slide 15

Exam	ples of	Resolution	Scores ·	- SNPs
Inbred	Sample	Profile	Highest match	Resolution score
Inbred A	1	GCCTACCGGGATGGCG	Inbred A	1
	2	[A/G]CCTACCGGGATGG C[A/G]	Inbred A and 1 other inbred (sib)	0.5
	3	GCC[C/T]ACCGG[G/T]AT GG[C/T]G	Inbred A	1
	4	GCCTACCGGGANGGCG	Inbred A	1
	5	GCNNACNNGGANNNNG	Inbred A and 4 other related inbreds	0.2

Slide 16

Isozymes						
Inbred	Sample	Profile	Highest match	Resolution score		
Inbred A	1	2,9,4,6,6,16,12,12,4,4,3.8 ,5,4,6,4	Inbred A and 17 other inbreds	0.06		
	2	2,9,4,6,6,16,12,12,4,4, 2/3.8,5,4,6,4	Inbred A and 29 other inbreds	0.03		
	3	2,9,4,6,6,16,12,12,4,4, N , 5,4,6,4	Inbred A and 30 other inbreds	0.03		

[End of document]