

BMT/15/9

ORIGINAL: English **DATE**: April 26, 2016

INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS Geneva

WORKING GROUP ON BIOCHEMICAL AND MOLECULAR TECHNIQUES AND DNA PROFILING IN PARTICULAR

Fifteenth Session

Moscow, Russian Federation, May 24 to 27, 2016

FAST SINGLE-STEP DETECTION AND IDENTIFICATION OF MILTIPLE PHYTOPATHOGENS AND GMO WITH REAL-TIME PCR-MATRIX TECHNIQUE

Document prepared by an expert from Russian Federation

Disclaimer: this document does not represent UPOV policies or guidance

The Annex to this document contains a copy of a presentation "Fast Single-step Detection and Identification of Multiple Phytopathogens and GMO with real-time PCR-matrix Technique" to be made at its fifteenth session of the Working Group on Biochemical and Molecular Techniques and DNS-Profiling in particular (BMT).

Alexander Golikov, Science Director, GenBit LLC, Russian Federation

[Annex follows]

ANNEX

FAST SINGLE-STEP DETECTION AND IDENTIFICATION OF MILTIPLE PHYTOPATHOGENS AND GMO WITH REALTIME PCR-MATRIX TECHNIQUE

Alexander Golikov

for

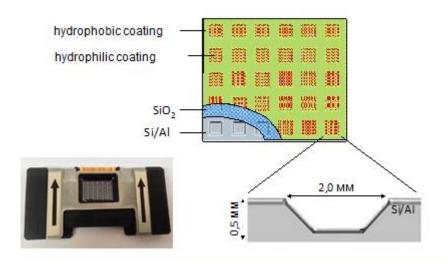
UPOV TECHNICAL WORKING PARTY FOR BIOCHEMICAL AND MOLECULAR TECHNIQUES, AND DNA-PROFILING IN PARTICULAR (BMT)

Fifteenth Session, Moscow, Russia, May from 24 to 27, 2016

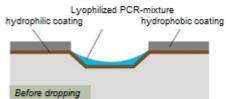
(with Preparatory Workshop on May 23, 2016)

FAST SINGLE-STEP DETECTION AND IDENTIFICATION OF MILTIPLE PHYTOPATHOGENS AND GMO WITH REALTIME PCR-MATRIX TECHNIQUE

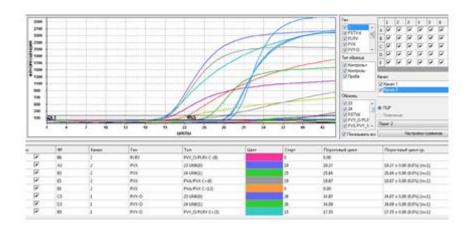
Alexander Golikov

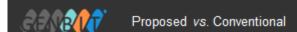

for

UPOV TECHNICAL WORKING PARTY FOR BIOCHEMICAL AND MOLECULAR TECHNIQUES, AND DNA-PROFILING IN PARTICULAR (BMT)


Fifteenth Session, Moscow, Russia, May from 24 to 27, 2016

(with Preparatory Workshop on May 23, 2016)


PCR-matrix



Guaranteed life span of preserved (lyophilized) PRC matrices: 6 months – DNA 3 months - RNA

Sample hydrophobic coating hydrophobic coating

Results are analyzed with the authentic "AriaDNA" software

Proposed

- Target: crop
- Multiple objects in a single test
- Time required: ~2 hrs (including DNA/RNA isolation)
- · Could be used "anywhere"
- · No need in highly trained personnel
- "Pre-serves" for a chosen range of pathogens that could be kept for ~6 months under room conditions

Conventional

- · Target: object/pathogen
- · Separate test for a single pathogen
- · Time required: > 1 day
- · Stationary conditions
- Does require highly trained personnel
- Reaction mixture for each object/pathogen

S - Strenath

- User friendliness
- · Multiple objects in a single test
- Speed
- · High sensitivity and accuracy
- Mobility
- End-users can easily develop their own applications

W - Weakness

- High qualification required for development of the test systems
- Not approved yet by international standards

O - Opportunities

- Use for screening and monitoring "anywhere"
- Use for seed quality assessment and for IPR protection
- End-users can easily develop their own applications

T - Threats

 Possible unpreparedness of the society to instantly accept new, differing significantly from traditional approaches

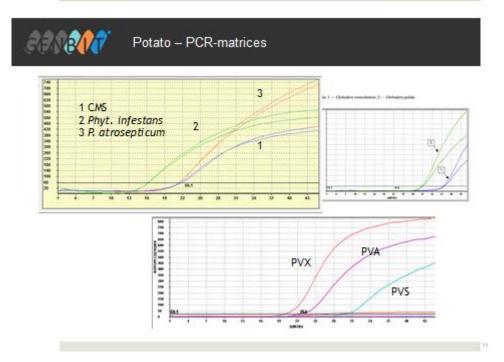
EENEM?

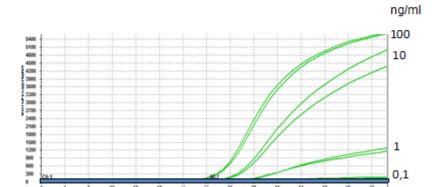
Po

Potato - available matrices

DNA	RNA	Soil
Clavibactermichiganensis subsp.sepedonicus	 PLRV 	 Globodera rostochiensis
Pectobacterium atrosepticum	 PVY-0+c 	 Globodera pallida
Dickeya dianthicola	 PVY-ntv 	Phytoplasm:
<u> </u>	 PVX 	Aster yellows (16 Sr I)
Erwinia carotovora subsp. atroseptica Ralstonia solanacearum	• PVA	X-disease (18 Sr III)
Phytophthora infestans	• PVM	Clover proliferation (16 Sr VI)
- Phytophinol a micsians	• PVS	
	• PMTV	
	• PSTVd	
	• PSIVU	

PAR P


Potato – sampling


Viruses

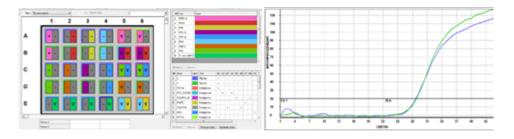
Bacteria

Potato - PCR-matrices

cycles

Analytical sensitivity

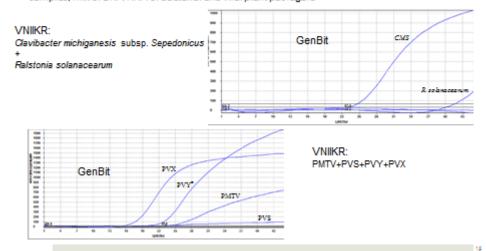
Potato - PCR-matrices, field tests


Together with the Russian Agricultural Center, Leningrad region, Shushary, 2014
Samples: foliage and stems, 10 potato varieties

VARIETY	DESCRIPTION	ELISA	GenBit - (rt) qPCR
Nevskiv	Suspected: Dickeya	???	Envinia carotovora subsp. atroseptica
Nevskiy	Suspected: Y-virus	-	PVY (0)
Avrora	Suspected: Y-virus	-	PVY (o+n)
Impala	Striated veins	PVM	PVM + PVY (o)
Asterisk	Spotted leaves	-	PVY (o+n)
Lausnak	Suspected: X-virus	PVX	PVX + PVY (o)

Potato - PCR-matrices, PSTV-d

Two samples by 150 mg each were taken from eyes (slices) of two mini-tuber suspected of being infected with the viroid


template

presence of PSTV-d in both samples (~0.5 ng/ml)

Potato - PCR-matrices, multiple pathogens

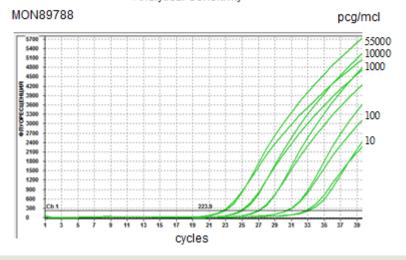
17.02.2015 Federal Enterprise "The All-Russian Center for Plant Quarantine" (VNIIKR), "blind" samples, mix of DNA/RNA of bacterial and viral plant pathogens

EU Database of Reference Methods for GMO Analysis

JRC EU: Compendium of reference methods for GMO analysis

The CropLife International Detection Methods Database

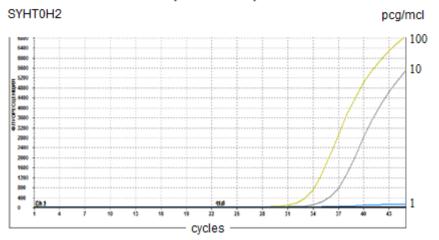
GM-soybean, element specific detection


GM-soybean lines approved for FFP in the Russian Federation

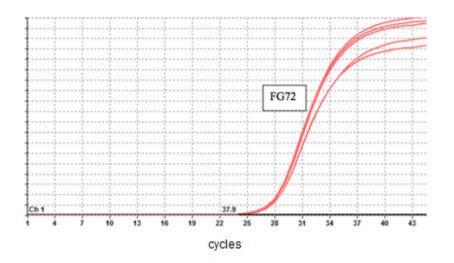
LINE	CaMV P-35S	P-FMV	T-nos	npt II	bar
A 2704-12	+	-	-	-	-
A 5547-127	+	-	-	-	-
BPS-CV127-9	-	-	-	-	-
GTS-40-3-2	+	-	+	-	-
MON87701	-	-	-	-	-
MON89788	-	+	-	-	-
SYHTOH2	-	-	-	-	-
FG72	-	-	-	-	-

EENENT.

GM-soybean, PCR-matrices, event specific


Analytical sensitivity

.



Analytical sensitivity

EENENT.

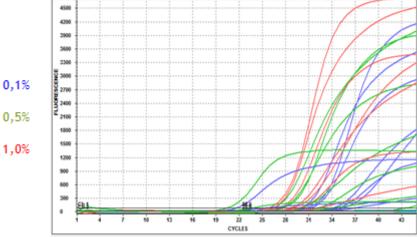
GM-soybean, PCR-matrices, event specific

17.02.2015 Federal Enterprise "Centre of Molecular Diagnostics (CMD) - The All-Russian State Center for Quality and Standardization of Veterinary Drugs and Feed (VGNKI)", three "blind" samples, mix of DNA of 7 GM-soybean lines each, one matrix

0.1%

LINE	GenBit
A 2704-12	+
A 5547-127	+
BPS-CV127-9	+
GTS-40-3-2	+
MON87701	+
MON89788	+
SYHTOH2	+

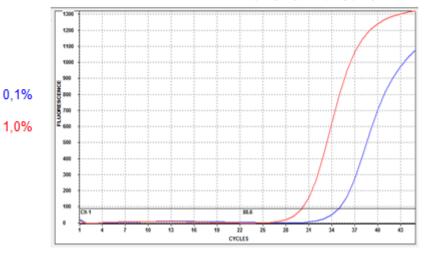
0.5%


LINE	GenBit
A 2704-12	+
A 5547-127	+
BPS-CV127-9	+
GTS-40-3-2	+
MON87701	+
MON89788	+
SYHTOH2	+

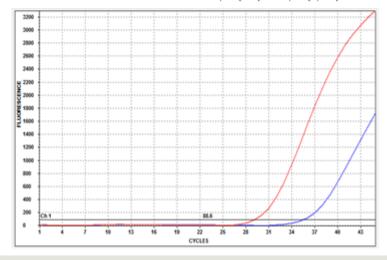
1.0%

LINE	GenBit
A 2704-12	+
A 5547-127	+
BPS-CV127-9	+
GTS-40-3-2	+
MON87701	+
MON89788	+
SYHTOH2	+

GM-soybean, PCR-matrices, event specific

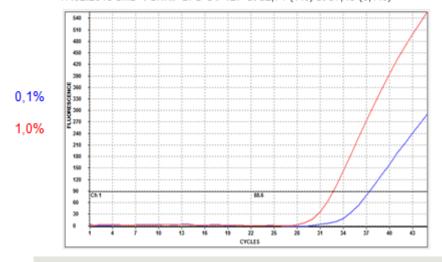

17.02.2015 CMD-VGNKI: A2704-12+A5547-127+BPS-CV127-9+GTS-40-3-2+MON87701+MON89788+SYHTOH2

EENE NO

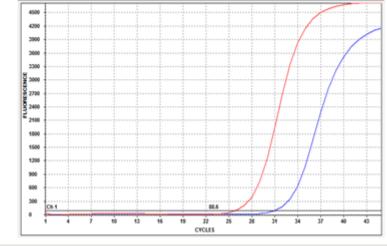

GM-soybean, PCR-matrices, event specific

17.02.2015 CMD-VGNKI: A2704-12 - Ct 30,12 (1%) Ct 34,99 (0,1%)

GM-soybean, PCR-matrices, event specific


17.02.2015 CMD-VGNKI: A5547-127 - Ct 29,24 (1%) Ct 30,57 (0,1%)

0,1%

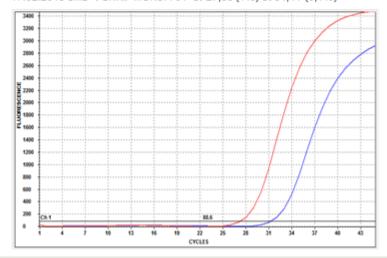

1,0%

17.02.2015 CMD-VGNKI: BPS-CV-127 Ct 32,71 (1%) Ct 37,43 (0,1%)

GM-soybean, PCR-matrices, event specific

17.02.2015 CMD-VGNKI: GTS 40-3-2 Ct 26,01 (1%) Ct 31,08 (0,1%)

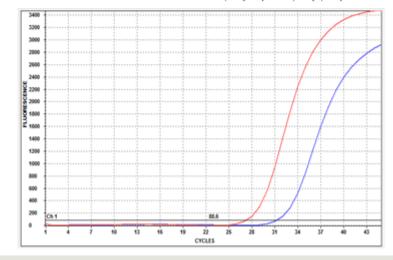
0,1%


CANANT GI

0,1%

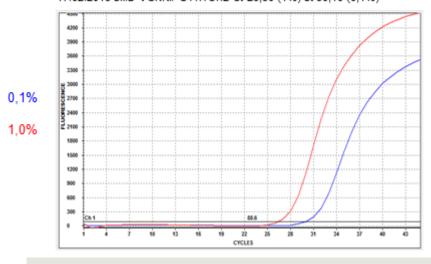
1,0%

GM-soybean, PCR-matrices, event specific

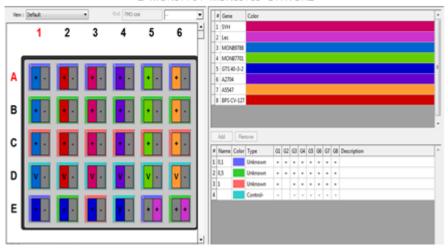

17.02.2015 CMD-VGNKI: MON87701 Ct 27,36 (1%) Ct 31,41 (0,1%)

EENENT.

GM-soybean, PCR-matrices, event specific


17.02.2015 CMD-VGNKI: MON89788 Ct 28,95 (1%) Ct 34,39 (0,1%)

0,1%


1,0%

17.02.2015 CMD-VGNKI: SYHTOH2 Ct 26,50 (1%) Ct 30,10 (0,1%)

GM-soybean, PCR-matrices, event specific (pattern)

17.02.2015CMD-VGNKI: A2704-12+A5547-127+BPS-CV127-9+GTS-40-3-2+MON87701+MON89788+SYHTOH2

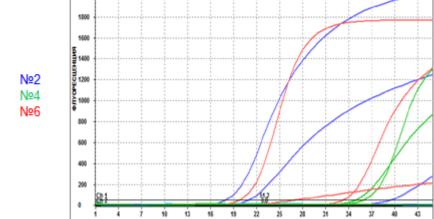
19.02.2015FederalEnterprise "Institute of Nutrition", three "blind" samples, DNA mix, one matrix:

MON89788+SYHT0H2+A2704 (№2)

BPS CV-127+SYHT0H2 (№4)

BPS CV-127+SYHT0H2+GTS 40-3-2 (№6)

Nº2		
LINE	GenBit	
A 2704-12	+	
A 5547-127	-	
BPS-CV127-9	-	
GTS-40-3-2	-	
MON87701	-	
MON89788	+	
SYHTOH2	+	

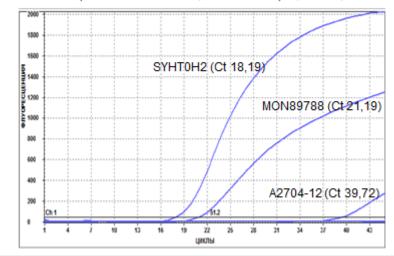

Nº4		
LINE	GenBit	
A 2704-12	-	
A 5547-127	-	
BPS-CV127-9	+	
GTS-40-3-2	-	
MON87701	-	
MON89788	-	
SYHTOH2	+	

Nº6		
LINE	GenBit	
A 2704-12	-	
A 5547-127	-	
BPS-CV127-9	+	
GTS-40-3-2	+	
MON87701	-	
MON89788	-	
SYHTOH2	+	

EENEW?

GM-soybean, PCR-matrices, event specific

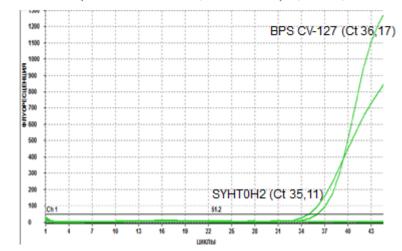
19.02.2015 Federal Enterprise "Institute of Nutrition", three "blind" samples, DNA mix, one matrix:



CENTON!

Nº2

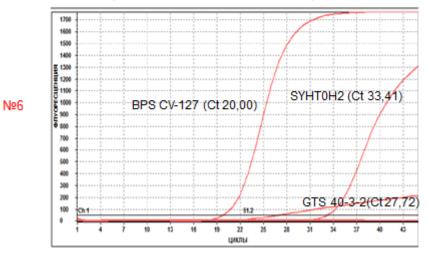
GM-soybean, PCR-matrices, event specific


19.02.2015 Federal Enterprise "Institute of Nutrition", three "blind" samples, DNA mix, one matrix:

EENEW?

GM-soybean, microchips, event specific

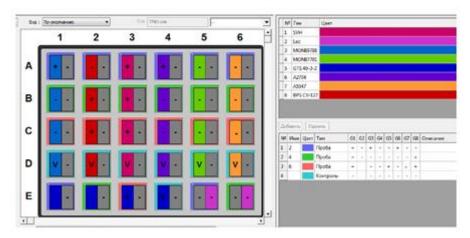
19.02.2015 Federal Enterprise "Institute of Nutrition", three "blind" samples, DNA mix, one matrix:


Nº4

94

CENTON!

GM-soybean, microchips, event specific


19.02.2015 Federal Enterprise "Institute of Nutrition", three "blind" samples, DNA mix, one matrix:

E ANGINE

GM-soybean, microchips, event specific (pattern)

19.02.2015 Federal Enterprise "Institute of Nutrition", three "blind" samples, DNA mix, one matrix:

29

[End of Annex and of document]