

BMT/14/12 Add. ORIGINAL: English DATE: January 12, 2015

INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS Geneva

WORKING GROUP ON BIOCHEMICAL AND MOLECULAR TECHNIQUES AND DNA-PROFILING IN PARTICULAR

Fourteenth Session Seoul, Republic of Korea, November 10 to 13, 2014

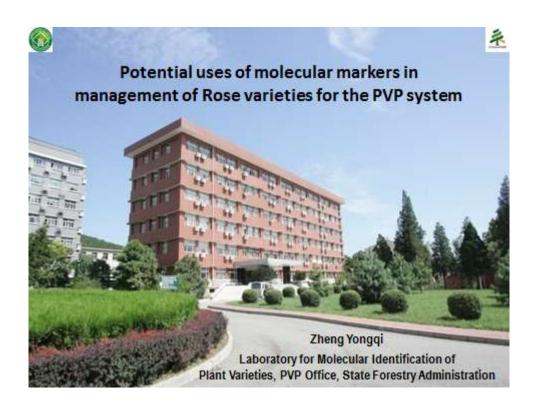
ADDENDUM TO DOCUMENT BMT/14/12

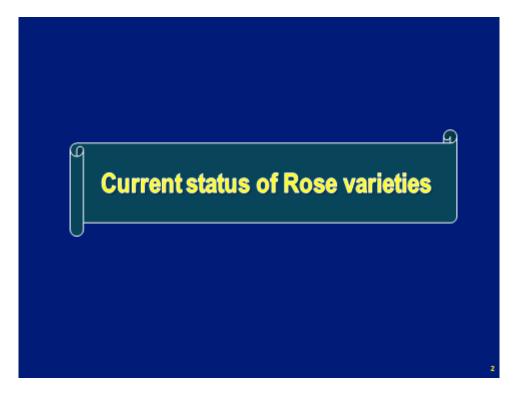
POTENTIAL USES OF MOLECULAR MARKERS IN MANAGEMENT OF ROSE VARIETIES FOR THE PVP SYSTEM

Document prepared by experts from China

Disclaimer: this document does not represent UPOV policies or guidance

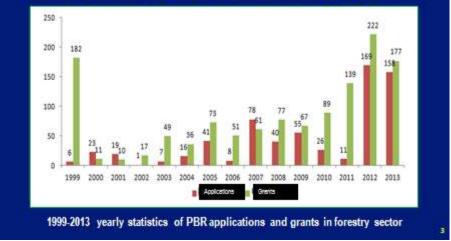
The Annex to this document contains a copy of a presentation "Potential uses of Molecular Markers in Management of Rose Varieties for the PVP System" made at its fourteenth session of the Working Group on Biochemical and Molecular Techniques and DNS-Profiling in particular (BMT).

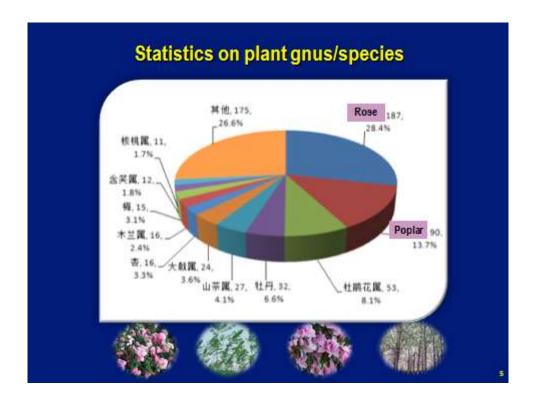

Zheng Yongqi, Yu Xuedan and Huang Ping

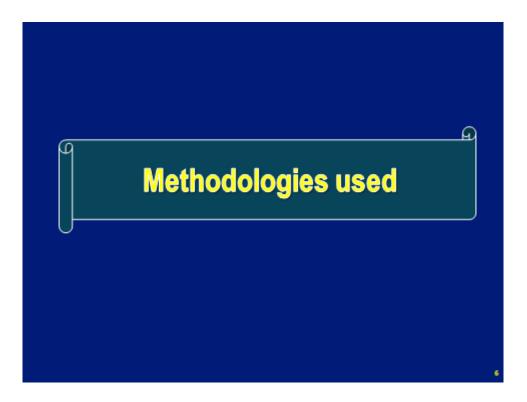

Lab for Molecular Identification of Plant Varieties, Office of PVP, State Forestry Administration, Beijing 100091, China

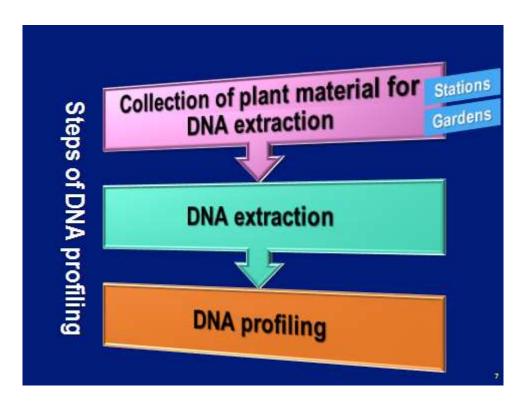
[Annex follows]

BMT/14/12 Add.

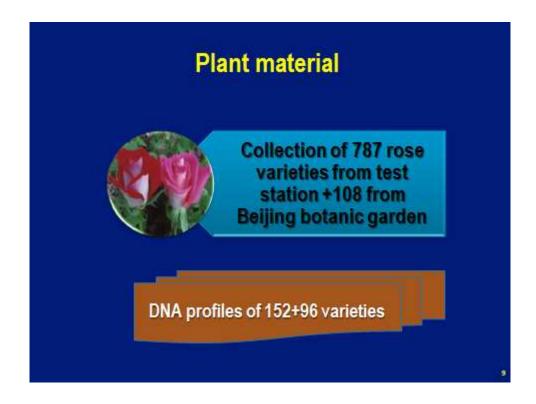

ANNEX

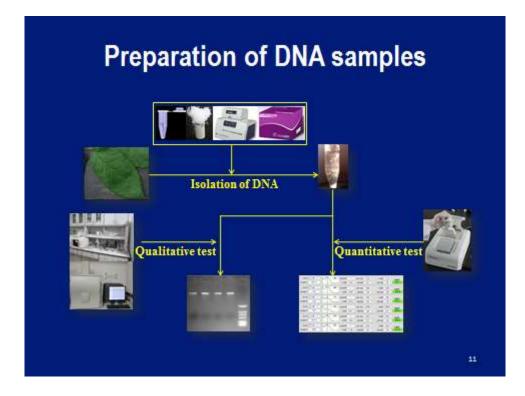

Numbers of applications and PBR grants in Forestry sector


Yearly PBR grants goes up from 6 in 1999 to 158 in 2013. The total number of granted PBR reached 753 by July 2014.



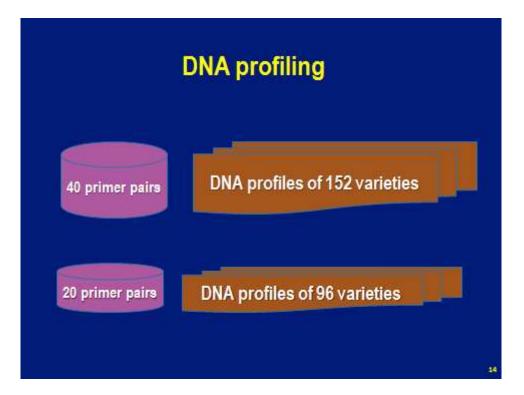
Statistics on categories of plants up to the end of 2013

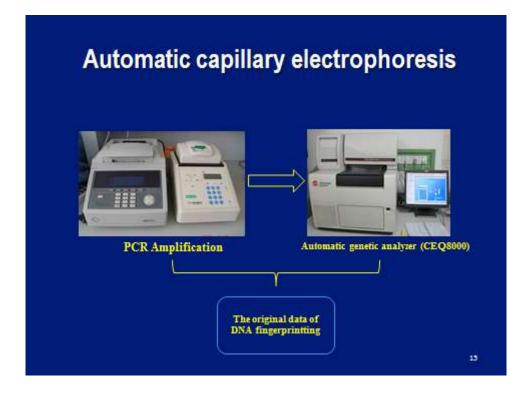

Applicants Plants	Researchers	Education	Individuals	Company	Forest farm	Other	Total	%
Tree	83	61	12	27	0	2	185	14.7%
Fruit	35	17	13	11	4	2	82	6.5%
Ornamental	123	98	149	429	71	67	937	74.3%
Bamboo	3	1	0	0	0	0	4	0.3%
Vine	2	0	0	0	0	0	2	0.2%
Other	15	11	4	19	2	0	51	4.0%
Total	261	188	178	486	77	71	1261	
%	20.7%	14.9%	14.1%	38.5%	6.1%	5.6%		100%

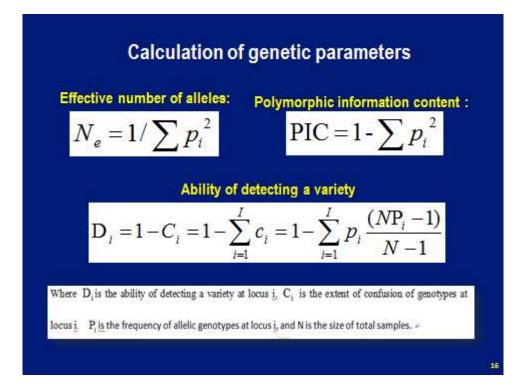


Collection of leaf samples of Rose varieties

- The samples collected from Rose Test Station and Beijing Botanic gardens
- Each variety randomly selected 3-5 sample plants
- The second and third fresh leaves from the top of sample plants were exsiccated respectively via silica gel
- Exsiccated leaves were kept in -80°C freezer


Preparation of primers

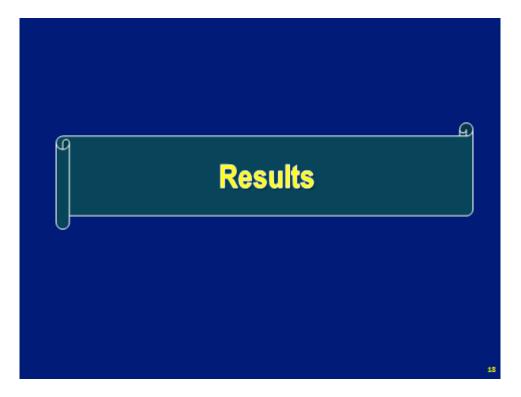

- Primer selection
 - Selected from published articles or public database
 - Developed via enrichment, sequencing and other method
- Pre-PCR
 - 5-8 DNA samples were random selected as templates
 - The conditions of PCR were optimized
 - Selection of the primers, which show polymorphism


Selection of primer pairs

≻SSR loci

- 130 selected microsatellite markers of public papers
- ✓ 41 primer pairs were amplified successfully
- 40 loci showed polymorphism
- ✓ 20 primer pairs were further selected from the 40 loci (Core primer pairs)

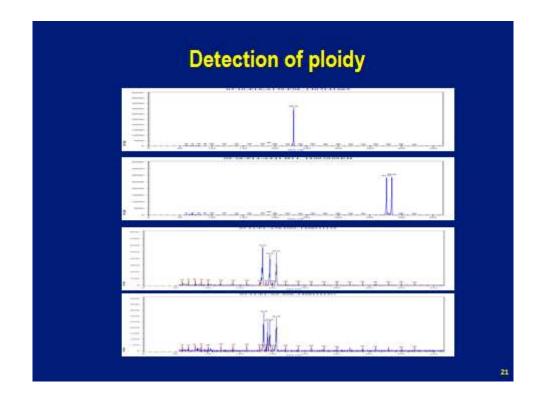
Hybrid and ploidy detection


Detection of hybrid varieties and ploidy of a variety can be done by an analysis of the number of alleles at each locus.

Genetic similarity: S=1-b/a

S is the genetic similarity, **a** is the average number of bands and b is the number of different bands.

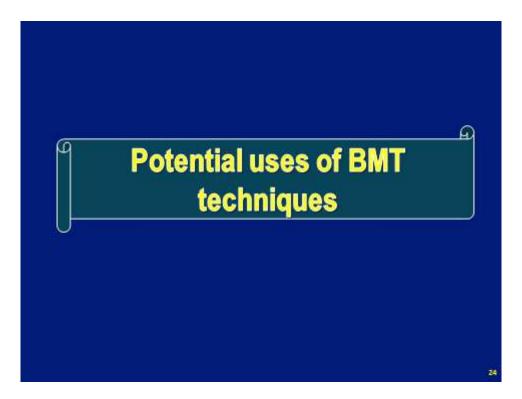
Number of Different Loci (DL)

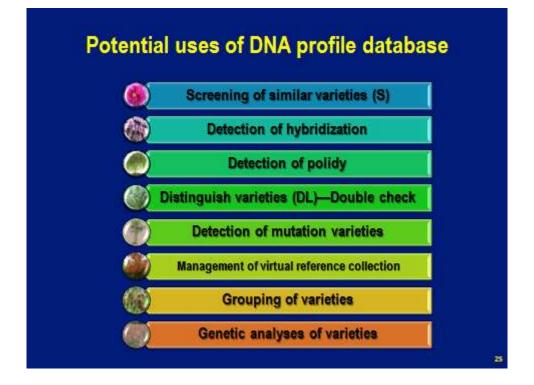

If DL>2, the two varieties are considered distinct from each other.

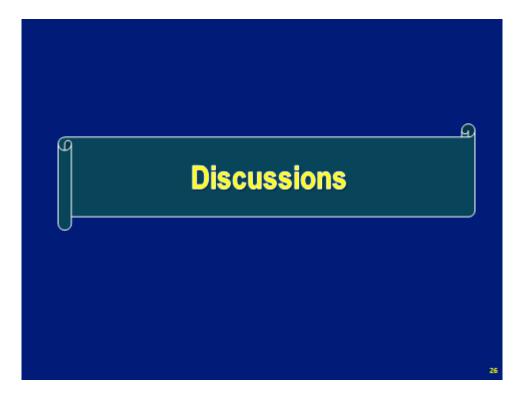
No.	Tm(%)	Size(bg)	No. of allele	No. of unique allelic	Ne	Dj	FIC
1	55	155-172	7	7	5.164	0.805	0.65
	56	219-248	11	15	4.379	0.915	0.77
	56	204-251		15	5.09	0.805	0.67
	54	221-271	14	25	4.001	0.559	0.75
	55	186-219	10	17	5.121	0.956	0.50
6	55	196-154	8	12	4.574	0.955	0.77
	56	250-286	17	59	7.557	0.955	0.86
8	55	227-261	14	45	7.515	0.954	0.86
8	58	262-265		0	1.994	0.515	0.49
10	55	254-265	14	35	6.356	0.965	0.54
11	55	257-275	11	26	5.595	0.949	0.81
12	55	255-264			3.401	0.826	0.70
15	55	248-274	15	26	5.997	0.905	0.74
14	55	221-250	12	24	4.856	0.952	0.79
15	55	255-245			5.702	0.57	6.72
16	55	171-269	16	21	4.267	0.864	0.76
17	56	180-259	18	25	3.599	0.821	0.705
15	58	216-270		15	4.999	0.912	0.79
19	55 58	152-205 221-257	15 17	52 52	8.286	0.955	0.875
20					7.05	0.985	0.85
21 22	56 56	246-274	12 7	24	4.851	0.942	0.72
25		149-179		27		0.945	
25	56 56	149-179 145-192	14	27 45	5.028	0.945	0.50
23	34	184-216	2	19	5.357	0.975	0.81
26	55	282-518	14	16	4.356	0.927	0.77
27	58	241-296	1	10	3.654	0.871	0.72
28	55	244-257	-	2	2,856	0.772	0.65
29	58	254-827	ii ii	20	3.561	0.875	0.715
30	58	260-281		÷.	2.745	0.677	0.63
31	58	200-225	2	8	6.496	0.955	0.54
32	55	221-249	3	2	1.551	0.746	0.64
33	58	221-241	a a		4.004	0.914	0.75
34	36	355-389	10	20	5.5	0.957	0.81
33	55	171-229	19	21	5.515	0.954	0.81
34	56	255-257		7	3.254	0.851	0.69
57	36	265-510	16	67	7.192	0.956	0.86
35	56	214-246		16	4.152	0.825	0.76
50	55	130-145	2	3	3.625	0.005	0.72
40	58	225-276	19	44	6.675	0.977	0.85
41	34	149-192	17	4	6.745	0.975	0.85

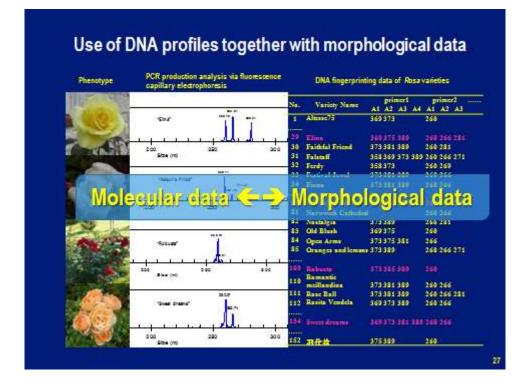
Detection of hybrids

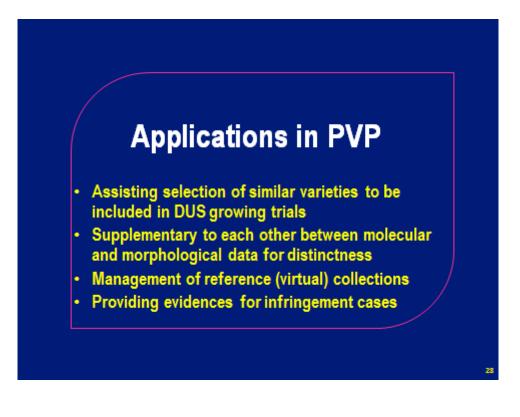
- SSR: Co-dominant marker
- Known both male and female parents
- Known one of the parents and offspring

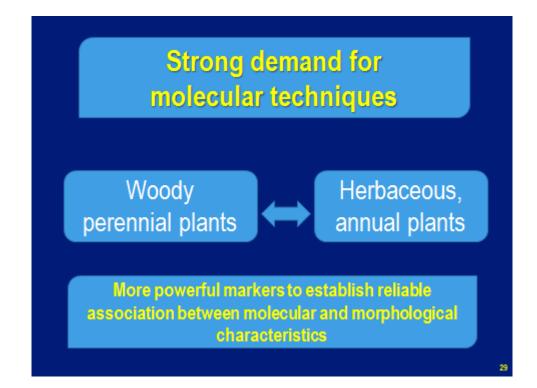



Variety A1		Locus 1					Locus 2				Locus 3				Locua 4				
	A1	A2	A3	A4	A5	A1	A2	A3	A4	A1	A2	A3	A4	A1	A2	A3	A4	AS	
1	182		<mark>197</mark>		203	235	241				248	253	276		289		298	301	
2	182				203	235	241				248	253	276		289		298	301	
3	182	189	<mark>197</mark>	201			241	247	256	238			276	287	289	291		301	
4	182	189		201			241	247	256	238			276	287	289	291			


22


Detection of identical varieties


- ✓ Three pairs of Rose varieties shared the same allelic genotype at 40 SSR loci, indicating identical/mutation varieties;
- The divergence of SSR DNA profiles among hybrid varieties was obvious;
- Mutation (Bud mutant) not distinguishable, AFLP markers used



[End of annex and of document]